11.07.2023

Срс на тему адсорбция. Процесс адсорбции


Адсорбция.

Сорбция

Сорбцией (от латинского sorbeo – поглощаю, втягиваю) называют любой процесс поглощения одного вещества (сорбтива ) другим (сорбентом ), независимо от механизма поглощения.


В зависимости от механизма сорбции различают адсорбцию, абсорбцию, хемосорбцию и капилярную конденсацию.


Адсорбция


Адсорбция это процесс, происходящий на границе раздела фаз. Он затрагиваетолько поверхностные слои, взаимодействующих фаз, и не распространяется на глубинные слои этих фаз.


Адсорбцией называют явление накопления одного вещества на поверхности другого. В общем случае, адсорбцией называют изменение концентрации вещества на границе раздела фаз.


Абсорбция


Абсорбция , в отличии от адсорбции, это процесс захватывающий не только поверхность раздела фаз, но распространяющийся на весь объём сорбента .


Примером процесса абсорбции является растворение газов в жидкости.


Хемосорбция


Хемосорбцией называется поглощение одного вещества другим, сопровождающееся их химическим взаимодействием.


Капилярная конденсация


Капиллярная конденсация - сжижение пара в капиллярах, щелях или порах в твердых телах.


Явление конденсации отлично от физической адсорбции.


Таким образом, сорбционные процессы различны по их механизму. Однако, любой сорбционный процесс начинается с адсорбции на границе соприкасающихся фаз, которые могут быть жидкими, газообразными или твёрдыми.

Адсорбция

Напомним, что адсорбцией называют явление накопления одного вещества на поверхности другого. В общем случае, адсорбцией называют изменение концентрации вещества на границе раздела фаз.


Адсорбция происходит на любых межфазовых поверхностях и адсорбироваться могут любые вещества.


Адсорбционное равновесие , т.е. равновесное распределение вещества между пограничным слоем и граничащими фазами является динамическим равновесием и быстро устанавливается.


Адсорбция понижается с понижением температуры.


Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтивом , поглощённое - адсорбатом . Вещество, на поверхности которого происходит адсорбция – адсорбентом .


Адсорбция представляет собой обратимый процесс. Процесс, обратный адсорбции, называется десорбцией .


Удаление адсорбированных веществ с адсорбентов при помощи растворителей называют элюцией .


Различают молекулярную и ионную адсорбцию . Это различение происходит в зависимости от того, что адсорбируется – молекулы или ионы вещества.

Адсорбция на поверхности жидкостей

На поверхности жидкостей могут адсорбироваться частицы веществ, растворённых в жидкостях. Адсорбция сопровождает процесс растворения, влияя на распределение частичек растворённого вещества между поверхностным слоем растворителя и внутренним его объёмом.


В соответствии со вторым началом термодинамики поверхностная энергия жидкостей стремится к минимуму. В чистых растворителях уменьшение этой энергии происходит путём сокращения поверхности.


В растворах поверхностная энергия может понижаться или увеличиваться за счёт изменения концентрации частиц в поверхностном слое жидкости.


Гиббсом было установлено, что распределение растворяемого в жидкости вещества происходит так, чтобы достигалось максимальное уменьшение поверхностного натяжения.


Он же предложил уравнение, определяющее величину адсорбции Г , т.е избытка вещества, накапливающегося в 1 см 2 поверхностного слоя, имеющего толщину примерно в одну молекулу, по сравнению с содержанием этого вещества в таком же объёме внутри жидкости.

Где Δσ - изменение поверхностного натяжения, соответствующее изменению концентрации ΔС .

Величина Δσ/ΔС называется поверхностной активностью .

Следовательно, адсорбция Г зависит от величины поверхностной активности и концентрации вещества С .


Если при этом поверхностное натяжение уменьшается, то адсорбция Г имеет положительное значение .


Положительная адсорбция. Поверхностно-активные вещества.


Чем сильнее вещество понижает поверхностное натяжение, тем больше оно будет накапливаться в поверхностном слое.


Концентрация растворённого вещества в поверхностном слое станет значительно выше, чем в остальном объёме жидкости. Возникающая разность концентраций неизбежно вызовет диффузию, которая будет направлена из поверхностного слоя внутрь жидкости и явится препятствием для полного перехода всех растворённых частиц в поверхностный слой. Установится подвижное адсорбционное равновесие между растворённым веществом в поверхностном слое и остальном объёме жидкости.


Адсорбцию, сопровождающуюся накоплением вещества в поверхностном слое , называют положительной. Пределом её служит полное насыщение поверхностного слоя адсорбируемым веществом.


Положительно адсорбирующиеся вещества называют также поверхностно-активными веществами (ПАВ ). В водных растворах роль ПАВ ов будут играть вещества с жирной и дифильной природой (жиры, большинство жирных кислот, кетоны, спирты, холестерин и др.).


Отрицательная адсорбция. Поверхностно-инактивные вещества.


Если растворённое вещество увеличивает поверхностное натяжение, то оно будет выталкиваться из поверхностного слоя внутрь адсорбента . Такую адсорбцию называют отрицательной .


Пределом отрицательной адсорбции является полное вытеснение адсорбтива из поверхностного слоя внутрь адсорбента (растворителя).


В результате разности концентраций возникнет диффузия , которая будет направлена в поверхностный слой. Поэтому в поверхностном слое всегда окажется некоторое количество адсорбтива.


Вещества, резко повышающие поверхностное натяжение, почти не содержатся в поверхностном слое разбавленных растворов. Лишь значительное увеличение концентрации подобных растворов приводит к перемещению в поверхностный слой заметных количеств растворённого вещества, что сопровождается увеличением поверхностного натяжения.


Отрицательно адсорбирующиеся вещества называются поверхностно-инактивными .


Адсорбция и поверхносное натяжение биологических жидкостей


Отрицательная и положительная адсорбция различных веществ в крови и протоплазме клеток имеет большое значение для обмена веществ в живых организмах.


Поверхностное натяжение биологических жидкостей значительно ниже , чем воды. Поэтому гидрофобные вещества, например кислоты жирного ряда, стероиды, будут накапливаться у стенок сосудов, клеточных мембран , что облегчает их проникновение сквозь эти мембраны.



Для адсорбции из водных растворов большое значение имеет наличие у молекул полярных (гидрофильных ) и неполярных (гидрофобных ) групп.


Так, в молекуле масляной кислоты имеется полярная группа СООН и гидрофобная углеводородная цепь:


Молекулы обладающие одновременно обеими видами групп, называются дифильными .


У дифильной молекулы с короткой гидрофобной цепью преобладают гидрофильные свойства , поэтому такие молекулы хорошо растворяются в воде, адсорбируясь отрицательно.


С удлинением углеводородной цепи усиливаются гидрофобные свойства молекул и понижается их растворимость в воде.


Следовательно, к поверхностно-активным веществам принадлежат вещества дифильной структуры, имеющие меньшее, чем растворитель, поверхностное натяжение , и растворение которых приводит к положительной адсорбции, вызывая понижение поверхностного натяжения.


Поверхностно-инактивные вещества обладают противоположными свойствами.


Одновременно с увеличением гидрофобных свойств молекул повышается их поверхностная активность. Так удлинение цепи в гомологическом ряду жирных кислот, спиртов, аминов и др. на радикал –СН2– увеличивает их способность к положительной адсорбции в разбавленных растворах в 3,2 раза (правило Траубе-Дюкло).


Молекулы веществ с преобладанием гидрофобных свойств (жирные кислоты с большим молекулярным весом и др.) располагаются в основном на поверхности воды, образуя поверхностные плёнки.


При небольшом количестве таких молекул поверхностной плёнки не образуется. Если же молекул много, то они располагаются упорядоченно, одна рядом с другой, причём их гидрофобные части выступают над водной поверхностью, образуя так называемый частокол Лэнгмюра.



1 - беспорядочное расположение дифильных молекул;
2 - частокол Лэнгмюра;
3 - избыток молекул;
4 - гидрофильная часть молекул;
5 - гидрофобная часть молекул;


Поверхностная плёнка образуется мономолекулярным слоем молекул, каждая из которых занимает на поверхности воды определённую площадь. Толщину слоя и площадь, занимаемую каждой молекулой, можно расчитать.


Так, молекулы жирных кислот, имеющие по одной полярной группе (масляная, валериановая, каприновая кислоты и т.п.) занимают на поверхности воды площадь
21 · 10 -16 см 2 , независимо от длины углеводородной цепи.


Жирные кислоты с двумя полярными группами (например, олеиновая кислота) занимает площадь, вдвое большую, а молекулы с тремя полярными группами (например, тристеарин) – втрое большую площадь и т.д.


При избытке вещества с преимущественно гидрофобными свойствами его молекулы располагаются над молекулярной плёнкой.


Кессонная болезнь


Образование поверхностных плёнок нередко затрудняет процесс фильтрации.


На границе раздела воздух–вода в пузырьках воздуха, находящихся в растворе, может адсорбироваться поверхностно-активное вещество. Плёнка этого вещества образует как-бы оболочку вокруг пузырька. Такой пузырёк при продавливании через узкие поры в фильтре не способен резко деформироваться и поэтому может закупорить более крупные отверстия в фильтре, чем пузырёк без плёнки.


У водолазов, работающих на больших глубинах, иногда возникает, так называемая, кесонная болезнь . В их скафандры воздух подаётся под давлением и, следовательно, в крови водолазов растворяется повышенное количество газов.


При слишком быстром поднятии на поверхность давление в скафандрах резко понижается, и значительная часть газов крови выделяется в виде пузырьков , на которых образуется поверхностная плёнка из содержащихся в крови поверхностно-активных веществ.


Пузырьки газов закупоривают мелкие сосуды в различных тканях и органах, что приводит к тяжёлому заболеванию или даже гибели человека.


Подобная же паталогия может возникнуть и в результате резкого падения атмосферного давления при разгерметизации скафандров лётчиков и кабин самолётов при высотных полётах.


Для лечения кессонной болезни больного помещают в барокамеру, где создают большое давление. Пузырьки газов вновь растворяются в крови. В течении нескольких суток давление в барокамере медленно снижают. За это время избыточный газ из крови столь же медленно удаляется через лёгкие, не создавая закупорок.

Адсорбция твёрдыми телами

Твёрдыми телами могут адсорбироваться газы и пары, а также молекулы и ионы растворённых веществ.


Природа сил, вызывающих адсорбцию


Адсорбция на твёрдых телах может быть объяснена наличием силовых полей притяжения, возникающих за счёт неуравновешенных связей в кристалической решётке.


На выступающих участках твёрдого адсорбента (на активных центрах) адсорбция идёт особенно сильно. Так выступы на частичке угля в 4,5 раза интенсивнее адсорбируют кислород, чем углубления на его поверхности.


Адсорбционные силы слагаются из валентных сил взаимодействия (химических) и более слабых ван-дер-ваальсовых (физических). Роль тех и других при разных случаях адсорбции различна. Так, в самом начале адсорбции большинства газов, когда их давление мало, наблюдается химическая адсорбция. С увеличением давления она уступает место физической, которая в основном определяет адсорбцию газов.


Адсорбционные силы могут быть достаточно велики. Так, для полного удаления со стекла адсорбированных молекул воды его необходимо сильно нагревать в вакууме.


Адсорбенты , обладающие мощными силовыми полями, оказываются сплошь покрытыми адсорбированными частицами. При незначительных же адсорбционных силах только более активные центры покрываеются адсорбируемыми частицами.


На адсорбцию влияет не только природа адсорбента, но и адсорбтива. Так, на твёрдых адсорбентах сильнее адсорбируются те газы, которые легче сжижаются, т.е. критическая температура которых выше.


Обратимость адсорбции


Адсорбция представляет собой обратимый процесс . Адсорбированные частицы не остаются не остаются неподвижными. Они удерживаются на адсорбенте всего сотые и тысячные доли секунды и, десорбируясь, замещаются на новые частицы. К тому же они не являются строго фиксированными на адсорбенте, а могут перемещаться по его поверхности. В итоге устанавливается динамическое адсорбционное равновесие между свободными и адсорбированными частицами.


Скорость адсорбции


Скорость адсорбции имеет большое значение для практического использования различных адсорбентов.


Например, в противогазе проходящий через коробку воздух должен очень быстро очищаться от примесей отравляющих веществ, что возможно лишь при высоких скоростях адсорбционных процессов.


Необходимо указать, что активированный уголь в противогазе играет роль не только адсорбента ряда отравляющих веществ, но и катализатора реакций разложения некоторых из них.


В частности, активированный уголь катализирует гидролиз фосгена:


COCl2 + H2 O = HCl + CO2 .


Повышение температуры понижает физическую адсорбцию адсорбцию, так как при этом усиливается движение молекул в адсорбционном слое, нарушается ориентация адсорбированных молекул, т.е. увеличивается десорбция .


С другой стороны увеличение температуры увеличивает энергию адсорбированных частиц, что усиливает химическую адсорбцию .


Следовательно, в одних случаях повышение температуры усиливает десорбцию, в других – увеличивает адсорбцию.


Так, для большинства газов повышение температуры уменьшает адсорбцию. В то же время увеличение температуры от –185 до +20°С в 10 раз увеличивает адсорбцию кислорода платиной, так как при этом возрастает химическая адсорбция.


Повышение давления газов и паров увеличивает адсорбцию.


Капилярная конденсация


При адсорбции паров наблюдают так называемую капилярную конденсацию , протекающую на угле и других пористых адсорбентах.


Сконденсировавшаяся в капилярах жидкость образует вогнутый мениск , над которым пар оказывается насыщенным при более низком давлении, чем над плоской поверхностью. Это повышает конденсацию паров в капилярах адсорбента.


Капилярная конденсация особенно выражена у легко сжижаемых газов.

Хемосорбция

При хемосорбции вещество вступает с адсорбентом в химическую реакцию , например:


O2 + 2Cu = 2CuO.


Если вновь образующиеся при хемосорбции молекулы диффундируют в глубь вещества адсорбента, то достижение сорбционного равновесия наступает медленнее, так как оно зависит от скорости диффузии.


Если же при хемосорбции на поверхности сорбента возникают недиффундирующие молекулы, т.е. образуется плёнка, то она тормозит и со временем останавливает процесс хемосорбции.


Так, пластинка алюминия, сорбируя кислород, покрывается плёнкой из оксида оалюминия, что быстро прекращает процесс хемосорбции:


4Al + 3O2 = 2Al2 O3 .


Хемосорбция , как и всякая химическая реакция, может быть экзо- или эндотермической . Следовательно повышение температуры усиливает одни хемосорбционные процессы и ослабляет другие.


Полностью разграничить адсорбцию и хемосорбцию нельзя. Обычно эти два процесса протекают совместно.

Процесс самопроизвольного концентрирования газов или растворенных веществ на поверхности раздела фаз называют адсорбцией . В зависимости от природы контактирующих фаз различают адсорбцию на границах: газ - твердое тело, газ – жидкость, жидкость - твердое тело и жидкость - жидкость.

Еще в 1785 г русский ученый Т.Е. Ловиц открыл способность угля поглощать растворенное вещество. С тех пор изучению явлений адсорбции было посвящено много работ, среди которых первостепенное значение имеют работы русских ученых: академика Н.Д.Зелинского, предложившего уголь в качестве универсального средства защиты от газообразных отравляющих веществ; М.С.Цвета, разработавшего хроматографический метод разделения веществ по их адсорбционной способности; академика К.К. Гедройца, создавшего учение о поглотительной способности почв; академика М.М. Думанского, разработавшего методику получения активных адсорбентов. Очень много для разработки теории и практики адсорбции сделали зарубежные ученые Гиббс, Ленгмюр, Фрейндлих, Поляни, Бранауэр и др.

Адсорбция является следствием снижения ненасыщенности молекулярных, атомных или ионных сил на поверхности раздела фаз и обусловлена накоплением вещества, снижающего свободную поверхностную энергию. Адсорбция – процесс самопроизвольный , т.к. в результате процесса адсорбции происходит уменьшение свободной поверхностной энергии, а по второму закону термодинамики такие процессы являются самопроизвольными.

Вещества, которые адсорбируются, называют адсорбатами (иногда - адсорбтивами), а вещества, которые адсорбируют на своей поверхности - адсорбентами .

В зависимости от характера сил, действующих между частицами (молекулы, атомы, ионы) адсорбата и адсорбента, различают физическую или ван-дер-ваальсову адсорбцию и химическую или хемосорбцию.

Природу адсорбции можно установить, исследовав её кинетику и энергетику. Действительно, физическая адсорбция происходит под влиянием относительно слабых межмолекулярных сил сцепления (сил Ван-дер-Ваальса) и по своей природе аналогична процессам конденсации паров адсорбата, теплота её близка к теплотам конденсации и составляет 10 - 50 кДж/моль. Поэтому при увеличении температуры физическая адсорбция уменьшается.

Хемосорбция связана с перекрыванием электронных орбиталей частиц адсорбата и адсорбента, т.е. вызывается их химическим взаимодействием, не приводящим, однако, к образованию объемной фазы. Теплота хемосорбции соизмерима с теплотами химических реакций и составляет обычно 60 - 600 кДж/моль. Химическая адсорбция с увеличением температуры увеличивается.

Адсорбция представляет собой обратимый процесс. Процесс, обратный адсорбции, называется десорбцией.


Различают молекулярную и ионную хемосорбцию в зависимости от того, что адсорбируется – молекулы или ионы вещества. В свою очередь, ионная адсорбция делится на обменную и адсорбцию потенциалопределяющих ионов.

Обменная адсорбция . Обменная адсорбция протекает на границе твердое тело / раствор электролита и состоит в том, что адсорбент и раствор обмениваются между собой катионами или анионами в эквивалентных количествах, благодаря чему принцип электронейтральности раствора электролита и адсорбента остается ненарушенным.

Основными факторами обменной адсорбции, определяющими ее специфичность, являются: наличие двойного электрического слоя на поверхности твердого адсорбента, валентность, величина радиуса и степень гидратации ионов раствора электролита.

Обменная адсорбция протекает несколько медленнее, чем обычная.

Для уяснения процесса обменной адсорбции можно рассмотреть процесс образования двойного электрического слоя при взаимодействии частицы хлористого серебра с раствором хлорида калия. Ионы хлора, сталкиваясь с частицами n будут соединяться с ионами серебра, образуя прочно удерживаемый слой С1- ионов, тем самым заряжая поверхность частицы. Такие ионы получили название потенциалопределяющих, а т.к. присоединившиеся С1 - -ионы увеличивают свою концентрацию, т.е. адсорбируются на поверхности, то такой вид адсорбции называется адсорбцией потенциалопределяющих ионов.

Адсорбированные С1 - -ионы заряжают частицу отрицательно, и под действием электростатических сил притяжения будет увеличиваться количество К + -ионов, прилегающих к поверхности частицы. Другими словами, будет происходить адсорбция противоионов под действием электростатических сил. Так как К + -ионы могут быть заменены другими ионами такого же знака, взаимодействующими с частицей лишь электростатически, такие ионы называются обменными, адсорбция их - обменной.

Таким образом, обменная адсорбция происходит в процессе обмена ионов двойного электрического слоя адсорбента и ионов раствора. Схематически это можно представить следующими уравнениями:

Адсорбент - ½Н + + Na + + Cl - à Адсорбент - ½Na + + H + +Cl -

Адсорбент + ½OH - + Na + + Cl - à Адсорбент + ½Cl - + Na + + OH -

Из приведенной схемы видно, что в ходе адсорбции ионов может изменяться рН среды (в раствор переходят H + или OH - ионы), раствор приобретает кислую или щелочную реакцию, такой вид адсорбции называется гидролитический.

Так как обменная адсорбция является химической, то обмен ионов происходит в строго эквивалентных соотношениях.

Обменные ионы на твердой поверхности обладают определенной величиной и знаком заряда, поэтому, чтобы не нарушался двойной электрический слой (ДЭС), обменными ионами из раствора, могут быть только ионы одного и того же знака. При этом не должна изменяться и величина заряда поверхности. Таким образом, обменная адсорбция может быть только анионообменной или катионообменной.

Явления обменной адсорбции играют важную роль в процессах, происходящих в почвах. Обменным комплексом почв является почвенный поглощающий комплекс (ППК), состоящий из коллоидных частиц, заряженных отрицательно. Обменными ионами почвы являются катионы. Важнейшие свойства почвы: водопроницаемость, влагоемкость, набухаемость, структура, рН почвенного раствора и др. – определяются составом адсорбированных ионов. Например, почвы, содержащие в составе обменных катионов значительное количество ионов натрия, приобретают особые, так называемые, “солонцовые свойства”. Они отличаются высокой дисперсностью, плотным сложением, высокой щелочностью, повышенной набухаемостью и вязкостью, малой водопроницаемостью. Эти почвы трудно обрабатываются и, несмотря на большой запас питательных веществ, мало плодородны. Если же в состав обменных катионов почвы входят преимущественно ионы кальция, то такие почвы обладают хорошей структурой, малой распыленностью, хорошей водо- и воздухопроницаемостью. Эти почвы относятся к наиболее плодородным. Примером почв с большим содержанием обменного кальция и прекрасными физико-химическими свойствами являются черноземные почвы.

Ионообменные процессы в почвах можно представить следующей схемой:

[ППК] - 2Na + + Са 2+ + SO 4 2- = [ППК] - Cа 2+ + Na 2 SO 4

Б.П. Никольский и Е.Н. Гапон предложили уравнение, описывающее обменную адсорбцию:

Здесь g 1 и g 2 – количество г-моль (г-экв) адсорбированных и десорбированных ионов единицей массы адсорбента, а 1 и а 2 – активности обменивающихся ионов в растворе при равновесии; z 1 и z 2 – заряд ионов, К – константа данного адсорбционного процесса.

Явление адсорбции находит широкое применение в промышленности и сельском хозяйстве. Так, на активированном угле производят адсорбционную очистку (рафинирование) сиропа сахарозы. Именно силы адсорбции удерживают ионы минеральных удобрений (К + , РО 4 -3 и т.п.) и молекулы (мочевины) в почве. Адсорбция мочевины физическая, молекулы её слабо удерживаются почвой. Поэтому мочевину, чтобы её не вынесло весенним паводком, вносят обычно весной. Калийные удобрения можно вносить в почву и осенью, так как адсорбция ионов К + вызывается химическими силами (ионные связи) и она прочная.

В общем случае адсорбция является функцией давления Р (для газов) или концентрации С (для жидких растворов) и температуры, т.е. изображается плоскостью в координатах Г = f(C,T). Обычно один из параметров поддерживают постоянным и адсорбцию графически изображают в виде кривых.

Количественная зависимость, устанавливаемая между адсорбентом и адсорбтивом при постоянной температуре в виде уравнения или кривой, называется изотермой адсорбции .

Cуществует несколько типов изотерм адсорбции - простейшими уравнениями для описания адсорбции являются уравнение Фрейндлиха и уравнение Ленгмюра .

Изотерма адсорбции по Фрейндлиху . Адсорбция растворенного вещества на твердой поверхности подчиняется определенной закономерности, согласно которой концентрация адсорбированного вещества возрастает не пропорционально его концентрации в растворе, а значительно медленнее, и пропорциональна корню n-ой степени из концентрации раствора. Эта зависимость при постоянной температуре может быть представлена следующем уравнением:

Х/m = К С 1/ n

где Х – количество (моль) вещества, адсорбированного m г адсорбента: С- равновесная концентрация; К и 1/n – эмпирические константы, характерные для данных адсорбента и адсорбата, значение 1/n колеблется между 0,1 – 0,7. Данное уравнение известно под названием изотермы адсорбции и имеет вид параболы.

Для графического построения изотермы адсорбции по Фрейндлиху на оси абсцисс откладывается равновесная концентрация в ммоль/л, а на оси ординат – величина адсорбции на единицу поверхности Х/m в ммоль/грамм. На рисунке 7 показано графическое изображение уравнения Фрейндлиха.

Адсорбция -процесс изменения концентрации у поверхности раздела двух фаз, а в более узком и употребительном- это повышение концентрации одного вещества у поверхности раздела двух фаз, из которых одна обычно является твердым телом.

Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтив, поглощённое - адсорбат. В более узком смысле под адсорбцией часто понимают поглощение примеси из газа или жидкости твёрдым веществом - адсорбентом. При этом, как и в общем случае адсорбции, происходит концентрирование примеси на границе раздела адсорбент-жидкость либо адсорбент-газ. Процесс, обратный адсорбции, то есть перенос вещества с поверхности раздела фаз в объём фазы, называется десорбция.

Абсорбция- поглощения сорбата всем объёмом сорбента. Абсорбция - частный случай сорбции.

Абсорбция, как правило, означает поглощение газов в объёме жидкости или реже твёрдого тела. Поглощение твёрдым абсорбентом, например, водорода палладием, называют окклюзией. Для процесса поглощения молекул газа или жидкости поверхностью твёрдого тела в русском языке используется термин адсорбция.

На практике абсорбции подвергают не отдельные газы, а газовые смеси, составные части которых поглощаются жидкостью. Эти составные части смеси называют абсорбируемыми компонентами (абсорбат), а непоглощаемые части - инертным газом.

Поверхностное натяжение – избыток свободной энергии в поверхностном слое, отнесенный к поверхности поглощающего тела. Поверхностное растяжение растворов зависит от природы растворителя и растворенного вещества, от концентрации последнего и от температуры. Поверхностное натяжение как функция концентрации растворенного вещества при Т-const - изотерма поверхностного натяжения.

1 и 2 – поверхностно-активные вещества (ПАВ).3 – поверхностно-инактивные вещества (ПИАВ). Разность с в поверхностном слое– поверхностный избыток вещества Г (гамма).Для ПАВ Г>0, для ПИАВ Г<0.Поверхность твердых тел, как и жидкостей, обладает избыточной свободной энергией Гиббса. Твердые тела не могут (в отличие от жидкостей) самопроизвольно изменять площадь поверхности.Величина адсорбции зависит от природы адсорбента и адсорбата, от давления газа, температуры.Зависимость адсорбируемого количества газа от давления адсорбата при постоянной температуре – изотерма адсорбции. С ростом давления увеличивается количество адсорбируемого вещества.Лэнгмюр при выводе уравнения изотермы сделал следующие допущения: 1. все места адсорбента одинаковы. 2. взаимодействие между частицами пренебрежимо мало. 3. адсорбционный слой состоит из одного слоя молекул, адсорбция локализованная – нет перемещения адсорбционного комплекса вдоль поверхности адсорбента.Степень заполнения адсорбента адсорбатом: Скорость адсорбции: константа скорости адсорбции.Скорость десорбции: константа скорости десорбции.Адсорбционное равновесие наступает при Уравнение изотермы хорошо передает зависимости в области низких и области высоких давлений, но не всегда оправдывается в промежуточной области.Процесс адсорбции экзотермичен: поглощение вещества протекает с выделением теплоты, десорбция – с поглощением теплоты.Если адсорбируются несколько газов: Для адсорбции на неоднородной поверхностибыло предложено эмпирическое уравнение Фрейндлиха. к и n – коэффициенты, постоянные для данного адсорбента и газа при данной температуре. Уравнение Фрейндлиха, наоборот, не отражает особенностей изотермы в области высоких и низких давлений, но для области промежуточных давлений согласуются с опытными данными.

Адсорбцией называется процесс избирательного поглощения одного или нескольких компонентов газовой или жидкостной смеси поверхностью твёрдого поглотителя (адсорбента).

Поглощаемый компонент (ПК), содержащийся в сплошной среде (газе, жидкости) именуется адсорбтивом, содержащийся в сорбенте – адсорбатом. Процесс адсорбции сопровождается выделением теплоты, величина которой зависит от характера взаимодействия адсорбированных молекул с поверхностью. Согласно этому, различают физическую и химическую адсорбцию.

Физическая адсорбция обуславливается действием ван-дер-ваальсовых сил. Количество выделяемой теплоты при адсорбции примерно соответствует величинам теплоты испарения (1-5 ккал/моль для простых молекул и 10-20 ккал/моль для больших молекул). Физическая адсорбция – обратимый процесс. Химическая адсорбция – необратимый процесс. Количество теплоты, выделяемое при химической адсорбции, близко к количеству теплоты химической реакции (10-100 ккал/моль). Химическая адсорбция возрастает с повышением температуры, физическая адсорбция с ростом температуры уменьшается – происходит десорбция.

Адсорбция используется для очистки газовых (жидких) смесей от нежелательной примеси или для выделения этой примеси в качестве целевого продукта; оптимальной является реализация совместно обеих целей, т.е. приближение технологии к безотходной. Благодаря селективности поглощения различных компонентов адсорбция является одним из эффективных процессов разделения. Вместе с тем она составляет одну из стадий проведения гетерогенной химической реакции – каталитической или некаталитической.

После осуществления адсорбции, производят десорбцию адсорбента. Это позволяет извлечь из сорбента ПК (нередко – целевой продукт) и вновь использовать освобождённый от него сорбент. Для этого необходимо провести активацию сорбента, чтобы восстановить его адсорбционные свойства. Стадии десорбции и активации адсорбента представляют собой его регенерацию.

Адсорбция широко применяется в химической технологии:

Для осушки газов и их очистки с выделением целевых компонентов;

Для извлечения (регенерации) растворителей из газовых или жидких смесей;

Для осветления растворов;

Для очистки газовых выбросов и сточных вод;

В аналитических целях (метод хроматографии).

Успех процесса адсорбции во многом определяется выбором адсорбента.

Основные требования к адсорбентам: селективность; возможно большая поглотительная способность; приемлемая стоимость и доступность; лёгкость десорбции и регенерации; высокая механическая прочность; удобство в работе; негорючесть, малое эрозионное воздействие на элементы аппаратуры.

Соответственно требованию высокой поглотительной способности, адсорбенты чаще всего – высокопористые твёрдые вещества, используемые в виде зёрен размером от долей миллиметра до нескольких миллиметров.

В зависимости от размеров различают микропоры, промежуточные поры (мезопоры), макропоры. К микропорам относят поры с радиусом до 20 Å (1 Å = 10-10 м), они соизмеримы с размерами молекул ПК. Удельная поверхность достигает от нескольких сотен до 2000 м2/ч.

Промежуточными считают поры радиусом от 20 до 1000-2000 Å; удельная поверхность здесь от 10 до 500 м2/ч. Полагают, что мезопоры выполняют две роли: собственно адсорбционную и транспортную (перенос молекул ПК к микропорам).

Макропоры (их радиус превышает 2000 Å) отличаются небольшой удельной поверхностью (до нескольких квадратных метров на 1 грамм). Основная их роль – транспортная: перенос ПК к микро- и мезопорам.К наиболее распространённым промышленным сорбентам относятся: активированные угли (АУ), силикагели и алюмогели, цеолиты, иониты.

При адсорбции молекулы газа или пара концентрируются на поверхности адсорбента под влиянием молекулярных сил притяжения. Этот процесс часто сопровождается химическим взаимодействием, а также конденсацией пара в капиллярных порах твердого адсорбента. Общепризнанной теории адсорбции еще нет. Согласно широко распространенному взгляду, адсорбция происходит под действием электрических сил, обусловленных взаимодействием зарядов молекул адсорбента и помещаемого вещества. По другой теории адсорбционные силы носят химический характер и природа их объясняется наличием свободных валентностей на поверхности адсорбента. Независимо от характера сил, вызывающих адсорбцию, при достаточном времени соприкосновения фаз наступает адсорбционное равновесие, при котором устанавливается определенная зависимость между концентрацией адсорбированного вещества X (в кг/кг адсорбента) и его концентрацией Y в фазе, соприкасающейся с адсорбентом:

где Y - равновесная концентрация (кг/кг инертной части паро­газовой смеси или раствора);

А и п - коэффициенты, определяемые опытным путем, причем n ³ 1.

Зависимость (1) соответствует определенной температуре и изображается кривой, которая носит название изотермы адсорбции.

Изотермы адсорбции некоторых веществ приведены на рис. 1. Рис. 1. Изотермы адсорбции

(gри 20 °С):

1 - для этилового эфира; 2 - для этилового спирта; 3 -для бензола.

Концентрация адсорбируемого вещества в смеси при постоянной температуре пропорциональна его давлению. Поэтому уравнение (1) может быть представлено в виде

где A1 – коэффициент пропорциональности;

Р - равновесное давление поглощаемого вещества в паро-газовой смеси.

Основными факторами, влияющими на протекание процесса адсорбции, являются: свойства адсорбента, температура, давление, свойства поглощаемых веществ и состав фазы, из которой они адсорбируются. Равновесная концентрация X уменьшается с повышением температуры и увеличивается с возрастанием давления. Таким образом, адсорбция ускоряется при понижении температуры или при повышении давления. Те же факторы влияют в обратном направлении на процесс десорбции, проводимый обычно после адсорбции. Десорбция ускоряется с повышением температуры адсорбента и снижением давления над ним, а также при пропускании через адсорбент паров, вытесняющих поглощенное вещество. Адсорбенты характеризуются статической и динамической активностью. После некоторого периода работы адсорбент перестает полностью поглощать извлекаемый компонент и начинается «проскок» компонента через слой адсорбента. С этого момента концентрация компонента в отходящей парогазовой смеси возрастает вплоть до наступления равновесия. Количество вещества, поглощенного единицей веса (или объема) адсорбента за время от начала адсорбции до начала «проскока», определяет динамическую активность адсорбента. Количество вещества, поглощенное тем же количеством адсорбента за время от начала адсорбции до установления равновесия, характеризует статическую активность. Активность адсорбента зависит от температуры газа и концентрации в нем поглощаемого компонента. Динамическая активность всегда меньше статической; поэтому расход адсорбента определяется по его динамической активности. Процессы адсорбции проводятся периодически или непрерывно. Если адсорбент движется через аппарат, адсорбция происходит непрерывно и материальный баланс процесса выражается уравнением (2), общим для всех процессов массопередачи. Адсорбция в слое неподвижного адсорбента является периодическим процессом, при котором концентрация поглощаемого вещества в адсорбенте меняется во времени и в пространстве. M = G(Y1-Y2) = L(X1-X2) (2) Примем, что газ (в количестве G за единицу времени), проходя за время dt слой адсорбента высотой dH, изменяет свою концентрацию на величину dY и, следовательно, отдает количество вещества G×dY×dt. За это же время концентрация поглощаемого вещества в элементе слоя увеличивается на dx и количество вещества, поглощенного слоем высотой dH, составляет S×dH×r×dX, где S - площадь поперечного сечения адсорбента, r - насыпная масса адсорбента. Тогда уравнение материального баланса будет иметь вид: - G×dY×dt = S×dH×r×dX (3) или

Основные понятия

Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтив , поглощённое - адсорбат . В более узком смысле под адсорбцией часто понимают поглощение примеси из газа или жидкости твёрдым веществом (в случае газа и жидкости) или жидкостью (в случае газа) - адсорбентом . При этом, как и в общем случае адсорбции, происходит концентрирование примеси на границе раздела адсорбент-жидкость либо адсорбент-газ. Процесс, обратный адсорбции, то есть перенос вещества с поверхности раздела фаз в объём фазы, называется десорбция . Если скорости адсорбции и десорбции равны, то говорят об установлении адсорбционного равновесия . В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и состав системы) .

Адсорбция и хемосорбция

На поверхности раздела двух фаз помимо адсорбции, обусловленной в основном физическими взаимодействиями (главным образом это Ван-дер-Ваальсовы силы), может идти химическая реакция. Этот процесс называется хемосорбцией . Чёткое разделение на адсорбцию и хемосорбцию не всегда возможно. Одним из основных параметров по которым различаются эти явления является тепловой эффект: так, тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата, тепловой эффект хемосорбции значительно выше. Кроме того в отличие от адсорбции хемосорбция обычно является необратимой и локализованной. Примером промежуточных вариантов, сочетающих черты и адсорбции и хемосорбции является взаимодействие кислорода на металлах и водорода на никеле: при низких температурах они адсорбируются по законам физической адсорбции, но при повышении температуры начинает протекать хемосорбция.

Схожие явления

В предыдущем разделе говорилось о случае протекания гетерогенной реакции на поверхности- хемосорбции. Однако бывают случаи гетерогенных реакций по всему объему, а не только на поверхности- это обычная гетерогенная реакция. Поглощение по всему объёму может проходить и под воздействием физических сил- этот случай называется абсорбцией.

Физическая адсорбция

Модели физической адсорбции
Образование монослоя Энергетическая диаграмма

Рис. 1: a) адсорбент, b) адсорбат, c) адсорбтив (газовая фаза или раствор) Рис. 2: a) адсорбент, b) адсорбат, c) газовая фаза, d - расстояние, E - энергия, E b - энергия адсорбции, (1) десорбция, (2) адсорбция
Поликонденсация Избирательная адсорбция
Рис. 3: a) адсорбент, b) адсорбат, c) конденсат, d) адсорбтив (газовая фаза или раствор) Рис. 4: a) адсорбент, b) адсорбат, c) адсорбтивы (газовая фаза или раствор): показана преимущественная адсорбция частиц голубого цвета

Причиной адсорбции являются неспецифические (то есть не зависящие от природы вещества) Ван-дер-Ваальсовы силы . Адсорбция, осложнённая химическим взаимодействием между адсорбентом и адсорбатом, является особым случаем. Явления такого рода называют хемосорбцией и химической адсорбцией . «Обычную» адсорбцию в случае, когда требуется подчеркнуть природу сил взаимодействия, называют физической адсорбцией .

Физическая адсорбция является обратимым процессом, условие равновесия определяется равными скоростями адсорбции молекул адсорбтива P на вакантных местах поверхности адсорбента S * и десорбции - освобождения адсорбата из связанного состояния S − P :

;

уравнение равновесияя в таком случае:

, ,

где - доля площади поверхности адсорбента, занятая адсорбатом, - адсорбционный коэффициент Ленгмюра, а P - концентрация адсорбтива.

Поскольку и, соответственно, , уравнение адсорбционного равновесия может быть записано следующим образом:

Уравнение Ленгмюра является одной из форм уравнения изотермы адсорбции. Под уравнением изотермы адсорбции (чаще применяют сокращённый термин - изотерма адсорбции) понимают зависимость равновесной величины адсорбции от концентрации адсорбтива a=f(С) при постоянной температуре (T=const ). Концентрация адсорбтива для случая адсорбции из жидкости выражается, как правило, в мольных либо массовых долях. Часто, особенно в случае адсорбции из растворов, пользуются относительной величиной: С/С s , где С - концентрация, С s - предельная концентрация (концентрация насыщения) адсорбтива при данной температуре. В случае адсорбции из газовой фазы концентрация может быть выражена в единицах абсолютного давления, либо, что особенно типично для адсорбции паров, в относительных единицах: P/P s , где P - давление пара, P s - давление насыщенных паров этого вещества. Саму величину адсорбции можно выразить также в единицах концентрации (отношение числа молекул адсорбата к общему числу молекул на границе раздела фаз). Для адсорбции на твёрдых адсорбентах, особенно при рассмотрении практических задач, используют отношение массы или количества поглощённого вещества к массе адсорбента, например мг/г или ммоль/г.

Значение адсорбции

Адсорбция - всеобщее и повсеместное явление, имеющее место всегда и везде, где есть поверхность раздела между фазами. Наибольшее практическое значение имеет адсорбция поверхностно-активных веществ и адсорбция примесей из газа либо жидкости специальными высокоэффективными адсорбентами. В качестве адсорбентов могут выступать разнообразные материалы с высокой удельной поверхностью: пористый углерод (наиболее распространённая форма - активированный уголь), силикагели , цеолиты а также некоторые другие группы природных минералов и синтетических веществ.

Установка для проведения адсорбции называется адсорбером .

См. также

  • Азотные установки адсорбционные

Примечания

Литература

  • Фролов Ю. Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. - М.: Химия, 1989. - 464 с.
  • Кельцев Н. В. Основы адсорбционной техники. - М.: Химия, 1984. - 592 с.
  • Грег С., Синг К. Адсорбция, удельная поверхность, пористость. - М.: Мир, 1984. - 310 с.*
  • Адамсон А. Физическая химия поверхностей. – М.: Мир. 1979. – 568 с.
  • Оура К., Лифшиц В. Г., Саранин А. А. и др. Введение в физику поверхности / Под ред. В. И. Сергиенко. - М.: Наука, 2006. - 490 с.
  • Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов. - Новосибирск: Наука. 1999. - 470 с.
  • Химическая энциклопедия. Т. 1. - М.: Советская энциклопедия, 1990. - 623 с.
  • Полторак О.М. Термодинамика в физической химии. - М.: Высшая школа, 1991. - 319 с.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Адсорбция на сайте «