29.01.2021

Какие вещества имеют металлическую кристаллическую решетку. Виды кристаллических решеток




















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : Комбинированный.

Цель урока: Создать условия для формирования умения учащихся устанавливать причинно-следственную зависимость физических свойств веществ от вида химической связи и типа кристаллической решетки, предсказывать тип кристаллической решетки на основе физических свойств вещества.

Задачи урока:

  • Сформировать понятия о кристаллическом и аморфном состоянии твердых тел, ознакомить учащихся с различными типами кристаллических решеток, установить зависимость физических свойств кристалла от характера химической связи в кристалле и типа кристаллической решетки, дать учащимся основные представления о влиянии природы химической связи и типов кристаллических решеток на свойства вещества.
  • Продолжить формирование мировоззрения учащихся, рассмотреть взаимное влияние компонентов целого-структурных частиц веществ, в результате которого появляются новые свойства, воспитывать умения организовать свой учебный труд, соблюдать правила работы в коллективе.
  • Развивать познавательный интерес школьников, используя проблемные ситуации;

Оборудование: Периодическая система Д.И. Менделеева, коллекция «Металлы», неметаллы: сера, графит, красный фосфор, кристаллический кремний, йод; Презентация «Типы кристаллических решёток», модели кристаллических решеток разных типов (поваренной соли, алмаза и графита, углекислого газа и йода, металлов), образцы пластмасс и изделий из них, стекло, пластилин, компьютер, проектор.

Ход урока

1. Организационный момент.

Учитель приветствует учеников, фиксирует отсутствующих.

2. Проверка знаний по темам” Химическая связь. Степень окисления”.

Самостоятельная работа (15 минут)

3. Изучение нового материала.

Учитель озвучивает тему урока и цель урока. (Слайд 1,2)

Учащиеся записывают в тетради дату, тему урок.

Актуализация знаний.

Учитель задаёт вопросы классу:

  1. Какие виды частиц вы знаете? Имеют ли заряды ионы, атомы и молекулы?
  2. Какие виды химических связей вы знаете?
  3. Какие вам известны агрегатные состояния веществ?

Учитель: «Любое вещество может быть газом, жидкостью и твёрдым веществом. Например, вода. При обычных условиях – это жидкость, но она может быть паром и льдом. Или кислород при обычных условиях представляет собой газ, при температуре -1940 C он превращается в жидкость голубого цвета, а при температуре -218,8°C затвердевает в снегообразную массу, состоящую из кристаллов синего цвета. На этом уроке мы рассмотрим твёрдое состояние веществ: аморфное и кристаллическое». (Слайд 3)

Учитель: аморфные вещества не имеют чёткой температуры плавления – при нагревании они постепенно размягчаются и переходят в текучее состояние. К аморфным веществам относят, например шоколад, который тает и в руках и во рту; жевательную резинку, пластилин, воск, пластмассы (показываются примеры таких веществ). (Слайд 7)

Кристаллические вещества имеют чёткую температуру плавления и, главное, характеризуются правильным расположением частиц в строго определенных точках пространства. (Слайды 5,6) При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решёткой. Точки, в которых размещены частицы кристалла, называют узлами решётки.

Учащиеся записывают в тетрадь определение: «Кристаллической решёткой называют совокупность точек пространства, в которых располагаются частицы, образующие кристалл. Точки, в которых размещаются частицы кристалла, называют узлами решётки».

В зависимости от того, какие виды частиц находятся в узлах этой решётки, различают 4 типа решёток. (Слайд 8) Если в узлах кристаллической решётки находятся ионы, то такая решётка называется ионной.

Учитель задаёт учащимся вопросы:

– Как будут называться кристаллические решётки, в узлах которых находятся атомы, молекулы?

Но есть кристаллические решётки, в узлах которых находятся и атомы, и ионы. Такие решётки называются металлическими.

Сейчас мы будем заполнять таблицу: «Кристаллические решётки, вид связи и свойства веществ». В ходе заполнения таблицы мы будем устанавливать взаимосвязь между типом решётки, видом связи между частицами и физическими свойствами твёрдых веществ.

Рассмотрим 1-й тип кристаллической решётки, которая называется ионной. (Слайд 9)

– Какая химическая связь в этих веществах?

Посмотрите на ионную кристаллическую решётку (показывается модель такой решётки). В её узлах находятся положительно и отрицательно заряженные ионы. Например, кристалл хлорида натрия построен из положительных ионов натрия и отрицательных хлорид-ионов, образующих решётку в форме куба. К веществам с ионной кристаллической решёткой относятся соли, оксиды и гидроксиды типичных металлов. Вещества с ионной кристаллической решёткой обладают высокой твёрдостью и прочностью, они тугоплавкие и нелетучие.

Учитель: Физические свойства веществ с атомной кристаллической решёткой те же, что и у веществ с ионной кристаллической решёткой, но часто в превосходной степени – очень твёрдые, очень прочные. Алмаз, у которого атомная кристаллическая решётка – самое твёрдое вещество из всех природных веществ. Он служит эталоном твёрдости, которая по 10-бальной системе оценивается высшим баллом 10.(Слайд 10). По этому типу кристаллической решётки вы сами внесёте необходимые сведения в таблицу, самостоятельно поработав с учебником.

Учитель: Рассмотрим 3-й тип кристаллической решётки, которая называется металлической. (Слайды 11,12) В узлах такой решётки находятся атомы и ионы, между которыми свободно перемещаются электроны, связывая их в единое целое.

Такое внутреннее строение металлов и определяет их характерные физические свойства.

Учитель: Какие физические свойства металлов вы знаете? (ковкость, пластичность, электро- и теплопроводность, металлический блеск).

Учитель: На какие группы делятся все вещества по строению? (Слайд 12)

Рассмотрим тип кристаллической решётки, которой обладают такие хорошо известные нам вещества как вода, углекислый газ, кислород, азот и другие. Она называется молекулярной. (Слайд14)

– Какие частицы располагаются в узлах этой решётки?

Химическая связь в молекулах, которые находятся в узлах решётки, может быть и ковалентная полярная, и ковалентная неполярная. Несмотря на то, что атомы внутри молекулы связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому вещества с молекулярной кристаллической решёткой имеют малую твердость, низкие температуры плавления и летучие. Когда газообразные или жидкие вещества при особых условиях превращаются в твёрдые, тогда у них появляется молекулярная кристаллическая решётка. Примерами таких веществ может быть твёрдая вода – лёд, твёрдый углекислый газ – сухой лёд. Такую решётку имеет нафталин, который применяют для защиты шерстяных изделий от моли.

– Какими свойствами молекулярной кристаллической решётки обусловлено применение нафталина? (летучестью). Как видим, молекулярную кристаллическую решетку могут иметь не только твердые простые вещества: благородные газы, H 2 ,O 2 , N 2 , I 2 , O 3 , белый фосфор Р 4 , но и сложные : твердая вода, твердые хлороводород и сероводород. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза,сахар).

В узлах решеток находятся неполярные или полярные молекулы. Несмотря на то, что атомы внутри молекул связаны прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного взаимодействия.

Вывод: Вещества непрочные, имеют малую твердость, низкую температуру плавления, летучи.

Вопрос: Какой процесс называется возгонкой или сублимацией?

Ответ: Переход вещества из твердого агрегатного состояния сразу в газообразное, минуя жидкое, называется возгонкой или сублимацией .

Демонстрация опыта: возгонка йода

Потом учащиеся по очереди называют сведения, которые они записали в таблицу.

Кристаллические решетки, вид связи и свойства веществ.

Тип решетки Виды частиц в узлах решетки Вид связи
между частицами
Примеры веществ Физические свойства веществ
Ионная Ионы Ионная – связь прочная Соли, галогениды (IA, IIA),оксиды и гидроксиды типичных металлов Твердые, прочные, нелетучие, хрупкие, тугоплавкие, многие растворимы в воде, расплавы проводят электрический ток
Атомная Атомы 1. Ковалентная не полярная – связь очень прочная
2. Ковалентная полярная – связь очень прочная
Простые веществ а : алмаз (C), графит (C) , бор (B), кремний (Si).
Сложные вещества : оксид алюминия (Al 2 O 3), оксид кремния (IV) – SiO 2
Очень твердые, очень тугоплавкие, прочные, нелетучие, не растворимы в воде
Молекулярная Молекулы Между молекулами – слабые силы
межмолекулярного притяжения, а вот
внутри молекул – прочная ковалентная связь
Твердые вещества при особых условиях, которые при обычных – газы или жидкости
(О 2 , Н 2 , Cl 2 , N 2 , Br 2 , H 2 O, CO 2 , HCl);
сера, белый фос фор, йод; органические вещества
Непрочные, летучие, легкоплавкие, способны к возгонке, имеют небольшую твердость
Металлическая Атом-ионы Металлическая – разной прочности Металлы и сплавы Ковкие, обладают блеском, пластичностью, тепло- и электропроводны

Учитель: Какой мы можем сделать вывод из проделанной работы по таблице?

Вывод 1: От типа кристаллической решётки зависят физические свойства веществ. Состав вещества → Вид химической связи → Тип кристаллической решетки → Свойства веществ. (Слайд 18).

Вопрос : Какой тип кристаллической решетки из рассмотренных выше не встречается в простых веществах?

Ответ: Ионные кристаллические решетки.

Вопрос : Какие кристаллические решетки характерны для простых веществ?

Ответ: Для простых веществ – металлов – металлическая кристаллическая решетка; для неметаллов – атомная или молекулярная.

Работа с Периодической системой Д.И. Менделеева.

Вопрос: Где в Периодической системе находятся элементы-металлы и почему? Элементы-неметаллы и почему?

Ответ : Если провести диагональ от бора до астата, то в нижнем левом углу от этой диагонали будут находиться элементы-металлы, т.к. на последнем энергетическом уровне они содержат от одного до трех электронов. Это элементы I A, II A, III A (кроме бора), а также олово и свинец, сурьма и все элементы побочных подгрупп.

Элементы-неметаллы находятся в верхнем правом углу от этой диагонали, т.к. на последнем энергетическом уровне содержат от четырех до восьми электронов. Это элементы IV A,V A, VI A, VII A, VIII A и бор.

Учитель: Давайте найдем элементы неметаллы, у которых простые вещества имеют атомную кристаллическую решетку (Ответ: С, В, Si) и молекулярную (Ответ: N, S, O , галогены и благородные газы )

Учитель : Сформулируйте вывод, как можно определить тип кристаллической решетки простого вещества в зависимости от положения элементов в Периодической системе Д.И.Менделеева.

Ответ: Для элементов-металлов, которые находятся в I A, II A, IIIA(кроме бора), а также олова и свинца, и всех элементов побочных подгрупп в простом веществе тип решетки-металлическая.

Для элементов-неметаллов IV A и бора в простом веществе кристаллическая решетка атомная; а у элементов V A, VI A, VII A, VIII A в простых веществах кристаллическая решетка молекулярная.

Продолжаем работать с заполненной таблицей.

Учитель : Посмотрите внимательно на таблицу. Какая закономерность прослеживается?

Внимательно слушаем ответы учеников, после чего вместе с классом делаем вывод. Вывод 2 (слайд 17)

4. Закрепление материала .

Тест (самоконтроль):

    Вещества, имеющие молекулярную кристаллическую решётку, как правило:
    a)Тугоплавки и хорошо растворимы в воде
    б) Легкоплавки и летучи
    в) Тверды и электропроводны
    г) Теплопроводны и пластичны

    Понятия «молекула» не применимопо отношению к структурной единице вещества:
    a) Вода
    б) Кислород
    в) Алмаз
    г) Озон

    Атомная кристаллическая решётка характерна для:
    a) Алюминия и графита
    б) Серы и йода
    в) Оксида кремния и хлорида натрия
    г) Алмаза и бора

    Если вещество хорошо растворимо в воде, имеет высокую температуру плавления, электропроводно, то его кристаллическая решётка:
    а) Молекулярная
    б) Атомная
    в) Ионная
    г) Металлическая

5. Рефлексия.

6. Домашнее задание.

Охарактеризуйте каждый вид кристаллической решётки по плану: Что в узлах кристаллической решётки, структурная единица → Тип химической связи между частицами узла → Силы взаимодействия между частицами кристалла → Физические свойства, обусловленные кристаллической решёткой → Агрегатное состояние вещества при обычных условиях → Примеры.

По формулам приведённых веществ: SiC, CS 2 , NaBr, C 2 H 2 – определите тип кристаллической решётки(ионная, молекулярная) каждого соединения и на основе этого опишите предполагаемые физические свойства каждого из четырёх веществ.

Вещество, как вам известно, может существовать в трёх агрегатных состояниях: газообразном, жидком и твёрдом (рис. 70). Например, кислород, который при обычных условиях представляет собой газ, при температуре -194 °С превращается в жидкость голубого цвета, а при температуре -218,8 °С затвердевает в снегообразную массу, состоящую из кристаллов синего цвета.

Рис. 70.
Агрегатные состояния воды

Твёрдые вещества делят на кристаллические и аморфные.

Аморфные вещества не имеют чёткой температуры плавления - при нагревании они постепенно размягчаются и переходят в текучее состояние. К аморфным веществам относится большинство пластмасс (например, полиэтилен), воск, шоколад, пластилин, различные смолы и жевательные резинки (рис. 71).

Рис. 71.
Аморфные вещества и материалы

Кристаллические вещества характеризуются правильным расположением составляющих их частиц в строго определённых точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решёткой. Точки, в которых размещены частицы кристалла, называют узлами решётки.

В узлах воображаемой кристаллической решётки могут находиться одноатомные ионы, атомы, молекулы. Эти частицы совершают колебательные движения. С повышением температуры размах этих колебаний возрастает, что приводит, как правило, к тепловому расширению тел.

В зависимости от типа частиц, расположенных в узлах кристаллической решётки, и характера связи между ними различают четыре типа кристаллических решёток: ионные, атомные, молекулярные и металлические (табл. 6).

Таблица 6
Положение элементов в Периодической системе Д. И. Менделеева и типы кристаллических решёток их простых веществ

Простые вещества, образованные элементами, не представленными в таблице, имеют металлическую решётку.

Ионными называют кристаллические решётки, в узлах которых находятся ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na + , Cl - , так и сложные , ОН - . Следовательно, ионные кристаллические решётки имеют соли, основания (щёлочи), некоторые оксиды. Например, кристалл хлорида натрия построен из чередующихся положительных ионов Na + и отрицательных Сl - , образующих решётку в форме куба (рис. 72). Связи между ионами в таком кристалле очень прочны. Поэтому вещества с ионной решёткой обладают сравнительно высокой твёрдостью и прочностью, они тугоплавки и нелетучи.

Рис. 72.
Ионная кристаллическая решётка (хлорид натрия)

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы. В таких решётках атомы соединены между собой очень прочными ковалентными связями.

Рис. 73.
Атомная кристаллическая решётка (алмаз)

Такой тип кристаллической решётки имеет алмаз (рис. 73) - одно из аллотропных видоизменений углерода. Огранённые и отшлифованные алмазы называют бриллиантами. Их широко применяют в ювелирном деле (рис. 74).

Рис. 74.
Две императорские короны с алмазами:
а - корона Британской империи; б - Большая императорская корона Российской империи

К веществам с атомной кристаллической решёткой относятся кристаллические бор, кремний и германий, а также сложные вещества, например такие, как кремнезем, кварц, песок, горный хрусталь, в состав которых входит оксид кремния (IV) SiO 2 (рис. 75).

Рис. 75.
Атомная кристаллическая решётка (оксид кремния (IV))

Большинство веществ с атомной кристаллической решёткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 °С, у кремния - 1415 °С, у кремнезёма - 1728 °С), они прочны и тверды, практически нерастворимы.

Молекулярными называют кристаллические решётки, в узлах которых располагаются молекулы. Химические связи в этих молекулах могут быть и ковалентными полярными (хлороводород НСl, вода Н 2 0), и ковалентными неполярными (азот N 2 , озон 0 3). Несмотря на то что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому вещества с молекулярными кристаллическими решётками имеют малую твёрдость, низкие температуры плавления, летучи.

Примерами веществ с молекулярными кристаллическими решётками являются твёрдая вода - лёд, твёрдый оксид углерода (IV) С) 2 - «сухой лёд» (рис. 76), твёрдые хлороводород НСl и сероводород H 2 S, твёрдые простые вещества, образованные одно- (благородные газы: гелий, неон, аргон, криптон), двух- (водород Н 2 , кислород O 2 , хлор Сl 2 , азот N 2 , иод 1 2), трёх- (озон O 3), четырёх- (белый фосфор Р 4), восьмиатомными (сера S 7) молекулами. Большинство твёрдых органических соединений имеют молекулярные кристаллические решётки (нафталин, глюкоза, сахар).

Рис. 76.
Молекулярная кристаллическая решётка (углекислый газ)

Вещества с металлической связью имеют металлические кристаллические решётки (рис. 77). В узлах таких решёток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны в общее пользование). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, металлический блеск.

Рис. 77.
Металлическая кристаллическая решётка (железо)

Лабораторный опыт № 13
Ознакомление с коллекцией веществ с разным типом кристаллической решётки. Изготовление моделей кристаллических решёток

    Ознакомьтесь с коллекцией выданных вам образцов веществ. Запишите их формулы, охарактеризуйте физические свойства и на их основе определите тип кристаллической решётки.

    Соберите модель одной из кристаллических решёток.

Для веществ, имеющих молекулярное строение, справедлив открытый французским химиком Ж. Л. Прустом (1799-1803) закон постоянства состава. В настоящее время этот закон формулируют так:

Закон Пруста - один из основных законов химии. Однако для веществ немолекулярного строения, например ионного, этот закон не всегда справедлив.

Ключевые слова и словосочетания

  1. Твёрдое, жидкое и газообразное состояния вещества.
  2. Твёрдые вещества: аморфные и кристаллические.
  3. Кристаллические решётки: ионные, атомные, молекулярные и металлические.
  4. Физические свойства веществ с различными типами кристаллических решёток.
  5. Закон постоянства состава.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. В каком агрегатном состоянии будет находиться кислород при -205 °С?
  2. Вспомните произведение А. Беляева «Продавец воздуха» и охарактеризуйте свойства твёрдого кислорода, используя его описание, приведённое в книге.
  3. К какому типу веществ (кристаллические или аморфные) относятся пластмассы? Какие свойства пластмасс лежат в основе их промышленного применения?
  4. К какому типу относится кристаллическая решетка алмаза? Перечислите характерные для алмаза физические свойства.
  5. К какому типу относится кристаллическая решетка иода? Перечислите характерные для иода физические свойства.
  6. Почему температура плавления металлов изменяется в очень широких пределах? Для подготовки ответа на этот вопрос используйте дополнительную литературу.
  7. Почему изделие из кремния при ударе раскалывается на кусочки, а изделие из свинца только расплющивается? В каком из указанных случаев происходит разрушение химической связи, а в каком - нет? Почему?

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества.

Наша задача познакомиться со строением вещества.

При низких температурах для веществ устойчиво твёрдое состояние.

Самым твёрдым веществом в природе является алмаз. Он считается царём всех самоцветов и драгоценных камней. Да и само его название означает по-гречески «несокрушимый». На алмазы с давних пор смотрели как на чудодейственные камни. Считалось, что человек, носящий алмазы, не знает болезней желудка, на него не действует яд, он сохраняет до глубокой старости память и весёлое расположение духа, пользуется царской милостью.

Алмаз, подвергнутый ювелирной обработке – огранке, шлифовке, называют бриллиантом.

При плавлении в результате тепловых колебаний порядок частиц нарушается, они становятся подвижными, при этом характер химической связи не нарушается. Таким образом, между твёрдым и жидким состояниями принципиальных различий нет.

У жидкости появляется текучесть (т. е. способность принимать форму сосуда).

Жидкие кристаллы

Жидкие кристаллы открыты в конце XIX века, но изучены впоследние 20-25 лет. Многие показывающие устройства современной техники, например некоторые электронные часы, мини-ЭВМ, работают на жидких кристаллах.

В общем-то слова «жидкие кристаллы» звучат не менее необычно, чем «горячий лёд» . Однако на самом деле и лёд может быть горячим, т.к. при давлении более 10000 атм. водянойлёдплавится при температуре выше 200 0 С. Необычность сочетания «жидкие кристаллы» состоит в том, что жидкое состояние указывает на подвижность структуры, а кристалл предполагает строгую упорядоченность.

Если вещество состоит из многоатомных молекул вытянутой или пластинчатой формы и имеющих несимметричное строение, то при его плавлении эти молекулы ориентируются определённым образом друг относительно друга (их длинные оси располагаются параллельно). При этом молекулы могут свободно перемещаться параллельно самим себе, т.е. система приобретает свойство текучести, характерное для жидкости. В то же время система сохраняет упорядоченную структуру, обусловливающую свойства, характерное для кристаллов.

Высокая подвижность такой структуры даёт возможность управлять ею путём очень слабых воздействий (тепловых, электрических и др.), т.е. целенаправленно изменять свойства вещества, в том числе оптические, с очень малыми затратами энергии, что и используется в современной технике.

Типы кристаллических решёток

Любое химическое вещество образованно большим числом одинаковых частиц, которые связаны между собою.

При низких температурах, когда тепловое движение затруднено, частицы строго ориентируются в пространстве и образуют кристаллическую решётку .

Кристаллическая решетка – это структура с геометрически правильным расположением частиц в пространстве.

В самой кристаллической решетке различают узлы и межузловое пространство.

Одно и то же вещество в зависимости от условий (p , t ,…)существует в различных кристаллических формах (т.е. имеют разные кристаллические решетки) – аллотропных модификациях, которые отличаются по свойствам.

Например, известно четыре модификации углерода – графит, алмаз, карбин и лонсдейлит.

Четвёртая разновидность кристаллического углерода «лонсдейлит» мало кому известна. Он обнаружен в метеоритах и получен искусственно, а строение его ещё изучается.

Сажу, кокс, древесный уголь относили к аморфным полимерам углерода. Однако теперь стало известно, что это тоже кристаллические вещества.

Кстати, в саже обнаружили блестящие чёрные частицы, которые назвали «зеркальным углеродом». Зеркальный углерод химически инертен, термостоек, непроницаем для газов и жидкостей, обладает гладкой поверхностью и абсолютной совместимостью с живыми тканями.

Название графита происходит от итальянского «граффитто» - пишу, рисую. Графит представляет собой тёмно – серые кристаллы со слабым металлическим блеском, имеет слоистую решётку. Отдельные слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются друг от друга.

ТИПЫ КРИСТАЛЛИЧЕСКИХ РЕШЁТОК

ионная

металлическая

Что в узлах кристаллической решётки, структурная единица

ионы

атомы

молекулы

атомы и катионы


Тип химической связи между частицами узла

ионная

ковалентная: полярная и неполярная

металлическая

Силы взаимодействия между частицами кристалла

электростати-

ческие

ковалентные

межмолекуляр-

ные

электростати-

ческие

Физические свойства, обусловленные кристаллической решёткой

· силы притяжения между ионами велики,

· Т пл. (тугоплавкте),

· легко растворяются в воде,

· расплав и р-р проводит эл.ток,

· нелетучи (не имеют запаха)

· ковалентные связи между атомами велики,

· Т пл. и T кип очень,

· в воде не растворяются,

· расплав не проводит эл.ток

· силы притяжения между молекулами невелики,

· Т пл. ↓,

· некоторые растворяются в воде,

· обладают запахом – летучи

· силы взаимодействия велики,

· Т пл. ,

· Высокие тепло и электропроводность

Агрегатное состояние вещества при обычных условиях

твёрдое

твёрдое

твёрдое,

газообразное,

жидкое

твёрдое,

жидкое(Нg)

Примеры

большинство солей, щелочей, оксиды типичных металлов

С (алмаз, графит), Si , Ge , B , SiO 2 , CaC 2 ,

SiC (карборунд), BN , Fe 3 C , TaC (t пл. =3800 0 С)

Красный и чёрный фосфор. Оксиды некоторых металлов.

все газы, жидкости, большинство неметаллов: инертные газы, галогены, H 2 , N 2 , O 2 , O 3 , P 4 (белый), S 8 . Водородные соединения неметаллов, оксиды неметаллов: H 2 O ,

CO 2 «сухой лёд». Большинство органических соединений.

Металлы, сплавы


Если скорость роста кристаллов мала при охлаждении – образуется стеклообразное состояние (аморфное).

  1. Взаимосвязь между положениемэлемента в Периодической системе и кристаллической решёткой его простого вещества.

Между положением элемента в периодической системе и кристаллической решёткой его соответствующего простого вещества существует тесная взаимосвязь.

группа

III

VII

VIII

п

е

р

и

о

д

H 2

N 2

O 2

F 2

III

P 4

S 8

Cl 2

Br 2

I 2

Тип

кристаллическойрешётки

металлическая

атомная

молекулярная

Простые вещества остальных элементов имеют металлическую кристаллическую решётку.

ЗАКРЕПЛЕНИЕ

Изучите материал лекции, ответьте на следующие вопросы письменно в тетради:

  1. Что такое кристаллическая решётка?
  2. Какие виды кристаллических решёток существуют?
  3. Охарактеризуйте каждый вид кристаллической решётки по плану: Что в узлах кристаллической решётки, структурная единица → Тип химической связи между частицами узла → Силы взаимодействия между частицами кристалла → Физические свойства, обусловленные кристаллической решёткой → Агрегатное состояние вещества при обычных условиях → Примеры

Выполните задания по данной теме:

  1. Какой тип кристаллической решётки у следующих широко используемых в быту веществ: вода, уксусная кислота (CH 3 COOH ), сахар (C 12 H 22 O 11), калийное удобрение (KCl ), речной песок (SiO 2) – температура плавления 1710 0 C , аммиак (NH 3), поваренная соль? Сделайте обобщённый вывод: по каким свойствам вещества можно определить тип его кристаллической решётки?
  2. По формулам приведённых веществ: SiC , CS 2 , NaBr , C 2 H 2 - определите тип кристаллической решётки (ионная, молекулярная) каждого соединения и на основе этого опишите физические свойства каждого из четырёх веществ.
  3. Тренажёр №1. "Кристаллические решётки"
  4. Тренажёр №2. "Тестовые задания"
  5. Тест (самоконтроль):

1) Вещества, имеющие молекулярную кристаллическую решётку, как правило:

a ). тугоплавки и хорошо растворимы в воде
б). легкоплавки и летучи
в). Тверды и электропроводны
г). Теплопроводны и пластичны

2) Понятия «молекула»не применимо по отношению к структурной единице вещества:

a ). вода

б). кислород

в). алмаз

г). озон

3) Атомная кристаллическая решётка характерна для:

a ). алюминияи графита

б). серы и йода

в). оксида кремния и хлорида натрия

г). алмаза и бора

4) Если вещество хорошо растворимо в воде, имеет высокую температуру плавления,электропроводно, то его кристаллическая решётка:

а). молекулярная

б). атомная

в). ионная

г). металлическая

Образование молекул из атомов приводит к выигрышу энергии, так как в обычных условиях молекулярное состояние устойчивее, чем атомное.

Чтобы рассматривать данную тему необходимо знать:

Электроотрицательность - это способность атома смещать к себе общую электронную пару. (Самый электроотрицательный элемент - фтор.)

Кристаллическая решетка - трехмерное упорядоченное расположение частиц.

Различают три основных типа химических связей: ковалентную, ионную и металлическую.

Металлическая связь характерна для металлов, которые содержат небольшое количество электронов на внешнем энергетическом уровне (1 или 2, реже 3). Эти электроны легко теряют связь с ядром и свободно перемещаются по всему куску металла, образуя "электронное облако" и обеспечивая связь с положительно заряженными ионами, образовавшимися после отрыва электронов. Кристаллическая решетка - металлическая. Это обуславливает физические свойства металлов: высокую тепло- и электропроводность, ковкость и пластичность, металлический блеск.

Ковалентная связь образуется за счет общей электронной пары атомов неметаллов, при этом каждый из них достигает устойчивой конфигурации атома инертного элемента.

Если связь образуют атомы с одинаковой электроотрицательностью, то есть разница электроотрицательности двух атомов равна нулю, электронная пара располагается симметрично между двумя атомами и связь называется ковалентной неполярной.

Если связь образуют атомы с разной электроотрицательностью, причем разница в электроотрицательности двух атомов лежит в интервале от нуля примерно до двух (чаще всего это разные неметаллы), то общая электронная пара смещается к более электроотрицательному элементу. На нем возникает частично отрицательный заряд (отрицательный полюс молекулы), а на другом атоме - частично положительный заряд (положительный полюс молекулы). Такая связь называется ковалентной полярной.

Если связь образуют атомы с разной электроотрицательностью, причем разница в электроотрицательности двух атомов больше двух (чаще всего это неметалл и металл), то считают, что электрон полностью переходит к атому неметалла. В результате этот атом становится отрицательно заряженным ионом. Атом, отдавший электрон, - положительно заряженным ионом. Связь между ионами называется ионной связью.

Соединения с ковалентной связью имеют два типа кристаллических решеток: атомные и молекулярные.

В атомной кристаллической решетке в узлах находятся атомы, соединенные прочной ковалентной связью. Вещества с такой кристаллической решеткой имеют высокие температуры плавления, прочны и тверды, практически нерастворимы в жидкостях. например, алмаз, твердый бор, кремний, германий и соединения некоторых элементов с углеродом и кремнием.

В молекулярной кристаллической решетке в узлах находятся молекулы, соединенные слабым межмолекулярным взаимодействием. Вещества с такой решеткой имеют малую твердость и низкие температуры плавления, нерастворимы или малорастворимы в воде, из растворы практически не проводят электрический ток. Например, лед, твердый оксид углерода (IV) твердые галогеноводороды, твердые простые вещества, образованные одно-(благородные газы), двух- (F 2 , Cl 2 , Br 2 , I 2 , H 2 , O 2 , N 2), трех-(О 3), четырех- (Р 4), восьми- (S 8) атомными молекулами. Большинство кристаллических органических соединений имеют молекулярную решетку.

Соединения с ионной связью имеют ионную кристаллическую решетку, в узлах которой чередуются положительно и отрицательно заряженные ионы. Вещества с ионной решеткой тугоплавки и малолетучи, имеют сравнительно высокую твердость, но хрупки. Расплавы и водные растворы солей и щелочей проводят электрический ток.

Примеры заданий

1. В какой молекуле ковалентная связь "элемент - кислород" наиболее полярна?

1) SO 2 2) NO 3) Cl 2 O 4) H 2 O

Решение:

Полярность связи определяется разностью электроотрицательности двух атомов (в данном случае элемента и кислорода). Сера, азот и хлор находятся рядом с кислородом, следовательно их электроотрицательности отличаются незначительно. И только водород находится на отдалении от кислорода, значит разница в электроотрицательности будет большая, и связь будет наиболее полярна.

Ответ: 4)

2. Водородные связи образуются между молекулами

1) метанола 2) метаналь 3) ацетилена 4) метилформиата

Решение:

В составе ацетилена вообще нет сильноэлектроотрицательных элементов. Метаналь Н 2 СО и метилформиат НСООСН 3 не содержат водорода, соединенного с сильноэлектроотрицательным элементом. Водород в них соединен с углеродом. А вот в метаноле СН 3 ОН между атомом водорода одной гидроксогруппы и атомом кислорода другой молекулы возможно образование водородной связи.

Ответ: 1)

Кристаллическая решетка – система точек, расположенных в равных, параллельно ориентированных вершинах и смежных по граням параллелепипедов без промежутков, заполняющих пространство точек, называющимися узлами, прямые - рядами, плоскости - сетками, параллелепипеды называются элементарными ячейками.

Типы кристаллических решеток: атомная – если в узлах расположены атомы, ионная – если в узлах расположены ионы, молекулярная - если в узлах расположены молекулы

2.Свойства кристаллических веществ - однородность, анизотропность, способность самоограняться.

Однородность - два одинаковых элементарных объема вещества параллельно ориентированых в пространстве, но выделены в разных точках вещества, абсолютно одинаковы по свойствам (берилл - турмалин).

Анизотропность - в разных направлениях кристаллической решетки в непараллельных направлениях многие свойства (н-р, прочность, твердость, показатель преломления) различны.

Способность самоограняться – свойство кристаллов при свободном росте образовывать правильно ограненные многогранники.

Свойство постоянства двугранных узлов – углы м/у соответствующимигранями и ребрами во всех кристаллах одного и того же вещества одинаковы.

3.Понятие сингонии. На какие категории подразделяются сингонии.

Сингония – совокупность видов симметрий, имеющая 1 или или несколько общих элементов симметрии, при равном числе единичных направлений. С. к. характеризуется соотношениями между осями а, b, с и углами ячейки.

Существует 7 Делятся на:

Низшую( не имеют осей симметрии выше второго порядка)

Среднюю (они имеют одну ось симметрии высшего порядка)

Единичные направления – направления, неповторяющиеся в кристаллах.

Являясь наиболее крупным классификационным подразделением в симметрии кристаллов, каждая С. к. включает в себя несколько точечных групп симметрий и Браве решёток.

4.Простые формы и комбинации. Физический смысл выделения простых форм в кристалле.

По внешнему виду кристаллы делятся на простые формы и комбинации. Простые формы – кристаллы полученные из одной грани путем действия на нее элемента симметрии.

Элементы симметрии:

    геометрический образ

    плоскость симметрии – плоскость перпендикулярная изображению, разделяющая фигуру на 2 части, соотносящиеся как предмет и его зеркальное отражение.

    Ось симметрии – это прямая, перпендикулярная изображению, при повороте вокруг которой на 360 о фигура совмещается сама с собой n раз.

    Центр симметрии – точка внутри кристалла характеризующаяся тем, что каждая проводимая через нее прямая встречается с двух сторон на одинаковом расстояниях идентичные точки.

Комбинации - кристаллы, состоящие из граней, различного типа, отличающихся по форме и размеру. Образуются сочетанием двух или более простых форм. Сколько на равномерно развитом кристалле типов граней столько в нем и простых форм.

Выделение граней разного типа имеет физический смысл , поскольку разные грани растут с различной скоростью и имеют разные свойства (твердость, плотность, показатель преломления).

Простые формы бывают открытые и закрытые. Закрытая простая форма с помощью граней одного типа самостоятельно замыкает пространство (тетрагональная дипирамида), открытая простая форма может замыкать пространство только в сочетании с другими простыми формами (тетрагональная пирамида+плоскость.) Всего существует 47 простых форм. Все они подразделяются по категриям:

Моноэдр - простая форма, представленная одной гранью.

Пинакоид - две равные параллельные грани, которые могут быть обратно расположенными.

Диэдр - две равные пересекающиеся грани (могут пересекаться на своём продолжении) .

Ромбическая призма - четыре равных попарно параллельных грани; в сечении образуют ромб.

Ромбическая пирамида четыре равные пересекающиеся грани; в сечении также образуют ромб. Перечисленные простые формы относятся к открытым, так как они не замыкают пространства. Присутствие в кристалле открытых простых форм, например, ромбической призмы обязательно вызывает присутствие других простых форм, например, пинакоида или ромбической дипирамиды, необходимых для того, чтобы получилась замкнутая форма.

Из закрытых простых форм низших сингоний отметим следующие. Ромбическая дипирамида две ромбические пирамиды, сложенные основаниями; форма имеет восемь разных граней, дающих в поперечном сечении ромб; Ромбический тетраэдр четыре грани, замыкающие пространство и имеющие форму косоугольных треугольников.

    Средняя категория (сингонии: триклинная, тетрагональная, гексагональная)– 27 п.ф.: моноэдр, пинокоид, 6 дипирамид, 6 пирамид, 6 призм, тетраэдр, ромбоэдр, 3 трапециэдра (грани в форме трапеции), 2 скаленоидра (образуются путем удвоения граней тетраэдра и ромбоэдра).

    Высшая категория – 15 п.ф.: основными являются тетраэдр, октаэдр, куб. Если вместо одной грани появляются 3 грани – тритетраэдр, если 6 – гексатетраэдр, если 4 – тетратетраэдр. Грани могут быть 3х, 4х, 5тиугольные: 3х – тригон, 4х – тетрагон, 5ти – пентагон.

Простой формой кристалла называют семейство граней, взаимосвязанных симметрическими операциями данного класса симметрии. Все грани, образующие одну простую форму кристалла, должны быть равны по размеру и форме. В кристалле могут присутствовать одна или несколько простых форм. Сочетание нескольких простых форм называется комбинацией.

Закрытыми называют такие формы, грани которых полностью замыкают заключенное между ними пространство, как, например, куб;

Открытые простые формы не замыкают пространство и не могут существовать самостоятельно, а только в комбинациях. Например, призма + пинакоид.

Рис.6. Простые формы низшей категории: моноэдр (1), пинакоид (2), диэдр (3).

В низших сингониях возможны следующие открытые простые формы (рис. 6):

Моноэдр (от греч. "моно"- один, "эдра"- грань) - простая форма, представленная одной единственной гранью. Моноэдром является, например, основание пирамиды.

Пинакоид (от греч."пинакс"- доска) - простая форма, состоящая из двух равных параллельных граней, часто обратно ориентированных.

Диэдр (от греч."ди" - два, "эдр"- грань) - простая форма, образованная двумя равными пересекающимися (иногда на своем продолжении) гранями, образующими "прямую крышу".

Ромбическая призма - простая форма, которая состоит из четырех равных, попарно параллельных граней, которые в сечении образуют ромб.

Ромбическая пирамида - простая форма состоит из четырех равных пересекающихся граней; в сечении также - ромб. Из закрытых простых форм низших сингоний отметим следующие:

Ромбическая дипирамида две ромбические пирамиды, сложенные основаниями. Форма имеет восемь равных граней, дающих в поперечном сечении ромб.

Ромбический тетраэдр - простая форма, четыре грани которой имеют форму косоугольных треугольников и замыкают пространство.

Открытыми простыми формами сингоний средней категории будут призмы и пирамиды.

Тригональная призма (от греч."гон"- угол) - три равных грани, пересекающихся по параллельным ребрам и образующих в сечении равносторонний треугольник;

Тетрагональная призма (от греч."тетра"- четыре) - четыре равных попарно параллельных грани, образующих в сечении квадрат;

Гексагональная призма (от греч."гекса"- шесть) - шесть равных граней, пересекающихся по параллельным ребрам и образующих в сечении правильный шестиугольник.

Названия дитригональных, дитетрагональных и дигексагональных получили призмы с удвоенным числом граней, когда все грани равны, а одинаковые углы между гранями чередуются через один.

Пирамиды - простые формы кристаллов средней категории могут быть, также как и призмы, тригональными (и дитригональными), тетрагональными (и дитетрагональными), гексагональными(и дигексагональными). Они образуют в сечении правильные многоугольники. Грани пирамид располагаются под косым углом к оси симметрии высшего порядка.

В кристаллах средней категории встречаются так же закрытые простые формы. Таких форм несколько:

Дипирамиды - простые формы, образованные двумя равными пирамидами, сложенными основаниями. В таких формах происходит удвоение пирамиды горизонтальной плоскостью симметрии, перпендикулярной главной оси симметрии высшего порядка (рис. 8). Дипирамиды, как и простые пирамиды, в зависимости от порядка оси могут иметь различные формы сечения. Они могут быть тригональными, дитригональными, тетрагональными, дитетрагональными, гексагональными и дигексагональными.

Ромбоэдр - простая форма, которая состоит из шести граней в виде ромбов и напоминает вытянутый или сплющенный по диагонали куб. Он возможен только в тригональной сингонии. Верхняя и нижняя группа граней повернуты относительно друг друга на угол 60о таким образом, что нижние грани располагаются симметрично между верхними.