12.08.2023

Вселенский космизм – учение культуры. Философский взгляд: как устроена Вселенная Какие системы образуют мир вселенную философия



ВСЕЛЕННАЯ
содержание понятия всего существующего; все то, что существует.

Философский энциклопедический словарь . 2010 .


ВСЕЛЕННАЯ
весь мир, бесконечный во времени и в пространстве и безгранично разнообразный по тем формам, к-рые принимает материя в процессе своего развития. Исходным пунктом, принципиальной основой изучения В. является признание ее материальности, объективности, независимости от человеч. сознания. В широком смысле В. является предметом изучения всего естествознания, каждая отрасль к-рого изучает одну из сторон В. В более узком смысле наукой о В. является астрономия, изучающая пространственно-временнoе распределение материи во В., строение и развитие небесных тел и их систем. Вопрос о В. в целом составляет предмет космологии.
Развитие представлений о строении В. прошло неск. этапов, к-рые характеризуются как расширением и углублением знаний о В., так и изменением содержания самого понятия "В.". В древнейшую эпоху исследование ограничивалось ближайшими окрестностями населенных местностей. Именно с этим ранним этапом связана этимология слова "В.", к-рое представляет собой церк.-слав. перевод греч. слова "?????????", т.е. населенная, обитаемая часть Земли. Следующий этап связан с установлением шарообразности Земли и отдаленности небесных светил (Пифагор, 6 в. до н.э., Аристотель, 4 в. до н.э., Эратосфен, 3 в. до н.э.). Опираясь на признание шарообразности Земли, Филолай (5 в. до н.э.) и Аристарх Самосский (3 в. до н.э) высказали предположение о движении Земли. Но эта мысль настолько противоречила традиции, что не встретила поддержки и была вскоре забыта. На долгое время утвердилась геоцентрич. система мира Птолемея (2 в. до н.э.), поддержанная авторитетом христианской церкви. Книга Коперника "Об обращении небесных сфер" (1543) произвела переворот в науке и заложила основы для науч. подхода к изучению В. Развив мысль Коперника о том, что Земля – рядовое небесное тело, Дж. Бруно пришел к выводу о бесконечности звездной В. С 17 в. началось интенсивное изучение Солнечной системы и обоснование гелиоцентрич. идей Коперника (Галилей, Кеплер, Декарт, Ньютон, Кант, Лаплас и др.). В 19 в. началось детальное исследование звездной системы Млечного пути, нашей Галактики; 20 в. ознаменовался доказательством существования др. галактик и переходом к изучению Метагалактики, т.е. известной нам совокупности галактик. Такое стремит. расширение границ астрономич. В. сопровождалось углублением знаний о ее осн. закономерностях. Если до 20 в. в основе астрономич. представлений лежали законы всемирного тяготения Ньютона и геометрия Эвклида, то совр. наука использует для своих построений общую теорию относительности (см. Относительности теория) и неэвклидову геометрию. Новый этап в исследовании В. открыла сов. наука, осуществив запуск первых искусств. спутников Земли и создание первой искусств. планеты.
В. является сложным структурным единством космич. систем разных порядков. Простейшую из известных нам космич. систем составляет планета с ее спутниками. Физич. характеристики и число спутников различных планет весьма разнообразны. Напр., объем Юпитера превышает объем Земли в 1295 раз; Земля имеет один спутник – Луну, а вокруг Юпитера движутся 12 спутников. Планеты с их спутниками включаются в систему более высокого порядка, центром к-рой является звезда. Примером подобной системы служит Солнце с девятью большими планетами (Меркурий, Венера, Марс, Земля, Юпитер, Сатурн, Уран, Нептун, Плутон) и с большим количеством астероидов, комет и метеорного вещества. Все планеты вращаются вокруг Солнца по эллиптич. орбитам, находящимся почти в одной плоскости. Диаметр Солнечной системы – 10 млрд. км. Солнце – раскаленный газовый шар – является источником энергии и определяет гравитационное поле (см. Поле физическое), в к-ром движутся планеты и др. тела Солнечной системы. Вся система движется по отношению к ближайшим звездам со скоростью 20 км/сек и вместе с ними участвует во вращении вокруг центра Галактики со скоростью ок. 230 км/сек. Солнечная система не представляет какого-то исключит. явления в природе. Данные астрономии позволяют утверждать, что имеются и др. планетные системы. Более высокими структурными единицами В. являются огромные скопления звезд, пылевых и газовых туманностей, примером чего служит наша Галактика. Рассматриваемая как единое целое, Галактика характеризуется как несколько сжатый сфероид с экваториальным диаметром порядка 26000 парсек (1 парсек = 3,26 световых лет = 3,08 x 10 13 км) и периодом собств. вращения порядка 200–240 млн. лет. Относительно ближайших галактик она движется со скоростью 250 км/сек. Галактика имеет два спутника – Малое и Большое Магеллановы облака, каждое из к-рых представляет собой небольшую галактику. Число звезд, входящих в Галактику, достигает порядка 10 11 , осн. масса их концентрируется в плоскости Млечного пути. Галактика неоднородна. Составляющие ее образования группируются в различные взаимопроникающие подсистемы. Особенностью галактик является отсутствие центр. тела, подобного Солнцу. Гравитац. поле определяется всей совокупностью галактич. образований и поэтому движение звезд носит гораздо более сложный характер, чем движение планет вокруг Солнца. Число галактик, к-рые в наст. время доступны наблюдению, достигает 1 млрд. В изученной части пространства галактики расположены относительно равномерно, образуя иногда скопления, архипелаги галактик. Существует предположение, что все эти галактики входят в систему более высокого порядка – Метагалактику.
Рассматривая всю совокупность науч. данных об известной нам части В., можно сделать неск. наиболее общих выводов о свойствах В. в целом. Достоверность этих выводов базируется на теоретич. обобщении всех достижений совр. науки.
В. бесконечна в пространстве; она не имеет ни начала, ни конца ни в каком направлении. Этот материалистич. тезис неоднократно подвергался нападкам. В 19 в. для этого использовались т.н. гравитац. и фотометрич. парадоксы (см. Космологические парадоксы). С возникновением релятивистской космологии в бурж. науке распространилась ошибочная концепция конечной, но не ограниченной В., противопоставляемая представлению о бесконечности В. (см. А. Эйнштейн, Вопросы космологии и общая теория относительности, в сб. "Принцип относительности", 1935). Логичность формально математич. стороны этой концепции маскирует произвольность исходных предпосылок, вводимых в теорию в качестве т.н. "упрощающих" предположений (однородность и изотропность пространства). Умозрит. характер этой концепции показан в ряде работ сов. и зарубежных ученых (Г. М. Идлис, Космическая материя, 1957; П. Лаберенн, Происхождение миров, 1957).
В. бесконечна во времени; она существовала и будет существовать вечно, не имея ни начала, ни конца во времени. Идеалисты пытались и пытаются опровергнуть это утверждение. В 19 в. опровержения шли по линии неправильного истолкования второго начала термодинамики (т.н. теории "тепловой смерти" В.). Ныне аргументация базируется на признании допплеровской природы красного смещения. Экстраполируя в прошлое наблюдаемые сейчас лучевые скорости галактик, идеалистически настроенные ученые приходят к выводу о "творении" В. и, следовательно, о существовании творч. начала. Именно поэтому эта теория стала почти офиц. точкой зрения католич. церкви.
Ошибочность подобных рассуждений заключается в том, что расширение известной нам части В. произвольно распространяется на всю В. Действительно, любой объект во В., любая упорядоченная звездная система имеют свой возраст, но в приложении ко В. в целом понятие "возраста" теряет свой смысл.
В. бесконечно разнообразна по формам существования и движения материи. Материя не возникает и не уничтожается, а только переходит из одной формы в другую. Поэтому совершенно произвольной и идеалистич. является теория о постоянном творении материи из "ничего" (F. Hoyle, A new model for the expanding universe, в журн. "Monthly Notices of the Royal Astron. Soc", L., 1948, v. 108; H. Bondi, Cosmology, 1952).
Бесконечное разнообразие материальных форм в бесконечной В. приводит к выводу о том, что органич. жизнь, как одна из форм существования материи, не является достоянием только нашей планеты, а возникает повсюду, где складываются соответствующие условия.
Таковы осн. свойства В., имеющие не только физич., но и большое философ. значение. В своих наиболее общих выводах наука о строении В. теснейшим образом связана с философией. Отсюда и ожесточенная идеологич. борьба, ведущаяся по вопросам структуры и развития В.
Отрицание бесконечности В. в пространстве и времени со стороны ряда ученых вызывается не только влиянием идеалистич. духовной атмосферы, в к-рой они находятся, но и безуспешными попытками построить непротиворечивую модель бесконечной В., опирающуюся на всю совокупность известных нам наблюдательных данных. Признание в той или иной форме конечности В. есть по существу отказ от решения важнейшей научной проблемы, переход с позиций науки на позиции религии. В противоположность этому философия диалектич. материализма, доказывая бесконечность В. в пространстве и времени, стимулирует дальнейшее развитие науки, указывая принципиальные пути для развития теории.
Вопрос о конечности или бесконечности В. – это вопрос не только естествознания. Само по себе накопление эмпирич. материала и его математич. обработка только в рамках той или иной отд. науки еще не могут дать исчерпывающего и логически неуязвимого ответа на поставленный вопрос. Наиболее адекватным средством для решения поставленной задачи является филос. анализ, опирающийся на достижения всего естествознания и прочную основу диалектико-материалистич. метода. На первый план здесь выдвигается диалектич. разработка понятия бесконечности, трудности оперирования к-рым ощущает не только космология, но и др. науки.
Т.о., проблема общих свойств В., ее пространств.-временных характеристик вызывает большие трудности. Но все тысячелетнее развитие науки убеждает в том, что решение этой проблемы может быть только на путях признания бесконечности В. в пространстве и времени. В общем плане такое решение дано диалектическим материализмом. Однако создание рационального, непротиворечивого представления о В. в целом с учетом всех наблюдаемых процессов – дело будущего.
Лит.: Энгельс Ф., Диалектика природы, М., 1955 его же, Анти-Дюринг, М., 1957; Ленин В. И., Материализм и эмпириокритицизм, Соч., 4 изд., т. 14; Блажко С. Н., Курс общей астрономии, М., 1947; ?олак И. Ф., Курс общей астрономии, 7 изд., М., 1955; Паренаго П. П., Курс звездной астрономии, 3 изд., М., 1954; Эйгенсон М. С, Большая Вселенная, М.–Л., 1936; Фесенков В. Г., Современные представления о Вселенной, М.–Л., 1949; Агекян Т. ?., Звездная Вселенная, М., 1955; Lyttlеton R. ?., The modern universe, L., ; Hоуle F., Frontiers of astronomy, Melb., ; Thomas O., Astronomie. Tatsachen und Probleme, 7 Aufl., Salzburg–Stuttgart, .
А. Бовин. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .


ВСЕЛЕННАЯ
ВСЕЛЕННАЯ (от греч. “ойкумена” - населенная, обитаемая земля) -“все существующее”, “всеобъемлющее мировое целое”, “тотальность всех вещей”; смысл этих терминов многозначен и определяется концептуальным контекстом. Можно выделить по крайней мере три уровня понятия “Вселенная”.
1. Вселенная как философская идея имеет смысл, близкий понятию “универсум”, или “мир”: “материальный мир”, “сотворенное бытие” и др. Она играет важную роль в европейской философии. Образы Вселенной в философских онтологиях включались в философские основания научных исследований Вселенной.
2. Вселенная в физической космологии, или Вселенная как целое, - объект космологических экстраполяции. В традиционном смысле - всеобъемлющая, неограниченная и принципиально единственная физическая система (“Вселенная издана в одном экземпляре” - А. Пуанкаре); материальный мир, рассматриваемый с физико-астрономической точки зрения (А.Л.Зельманов). Разные теории и модели Вселенной рассматриваются с этой точки зрения как неэквивалентные друг другу одного и того же оригинала. Такое понимание Вселенной как целого обосновывалось по-разному: 1) ссылкой на “презумпцию экстраполируемости”: космология претендует именно на репрезентацию в системе знания своими концептуальными средствами всеобъемлющего мирового целого, и, пока не доказано обратное, эти претензии должны приниматься в полном объеме; 2) логически-Вселенная определяется как всеобъемлющее мировое целое, и других Вселенных не может существовать по определению и т.д. Классическая, Ньютонова космология создала образ Вселенной, бесконечной в пространстве и времени, причем бесконечность считалась атрибутивным свойством Вселенной. Общепринято, что бесконечная гомогенная Вселенная Ньютона “разрушила” античный космос. Однако научные и философские образы Вселенной продолжают сосуществовать в культуре, взаимообогащая друг друга. Ньютоновская Вселенная разрушила образ античного космоса лишь в том смысле, что отделяла человека от Вселенной и даже противопоставляла их.
В неклассической, релятивистской космологии была впервые построена теория Вселенной. Ее свойства оказались совершенно отличными от ньютоновских. Согласно теории расширяющейся Вселенной, развитой Фридманом, Вселенная как целое может быть и конечной, и бесконечной в пространстве, а во времени она во всяком случае конечна, т. е. имела начало. А. А. Фридман считал, что мир, или Вселенная как объект космологии, “бесконечно уже и меньше мира-вселенной философа”. Напротив, подавляющее большинство космологов на основе принципа единообразия отождествляло модели расширяющейся Вселенной с нашей Метагалактикой. Начальный момент расширения Метагалактики рассматривался как абсолютное “начало всего”, с креационистской точки зрения - как “сотворение мира”. Некоторые космологи-релятивисты, считая принцип единообразия недостаточно обоснованным упрощением, рассматривали Вселенную как всеобъемлющую физическую систему большего масштаба, чем Метагалактика, а Метагалактику-лишь как ограниченную часть Вселенной.
Релятивистская космология коренным образом изменила образ Вселенной в научной картине мира. В мировоззренческом плане она вернулась к образу античного космоса в том смысле, что снова связала человека и (эволюционирующую) Вселенную. Дальнейшим шагом в этом направлении явился антропный принцип в космологии. Современный подход к интерпретации Вселенной как целого основывается, во-первых, на разграничении философской идеи мира и Вселенной как объекта космологии; во-вторых, это понятие релятивизируется, т. е. его объем соотносится с определенной ступенью познания, космологической теорией или моделью - в чисто лингвистическом (безотносительно к их объектному статусу) или же в объектном смысле. Вселенная интерпретировалась, напр., как “наибольшее множество событий, к которому могут быть применены наши физические законы, экстраполированные тем или иным образом” или “могли бы считаться физически связанными с нами” (Г. Бонди).
Развитием этого подхода явилась концепция, согласно которой Вселенная в космологии-это “все существующее”. не в каком-то абсолютном смысле, а лишь с точки зрения данной космологической теории, т. е. физическая система наибольшего масштаба и порядка, существование которой вытекает из определенной системы физического знания. Это относительная и преходящая граница познанного мегамира, определяемая возможностями экстраполяции системы физического знания. Под Вселенной как целым не во всех случаях подразумевается один и тот же “оригинал”. Напротив, разные теории могут иметь в качестве своего объекта неодинаковые оригиналы, т. е. физические системы разного порядка и масштаба структурной иерархии. Но все претензии на репрезентацию всеобъемлющего мирового целого в абсолютном смысле остаются бездоказательными. При интерпретации Вселенной в космологии следует проводить различие между потенциально и актуально существующим. То, что сегодня считается несуществующим, завтра может вступить в сферу научного исследования, окажется существующим (с точки зрения физики) и будет включено в наше понимание Вселенной.
Так, если теория расширяющейся Вселенной описывала по сути нашу Метагалактику, то наиболее популярная в современной космологии теория инфляционной (“раздувающейся”) Вселенной вводит понятие о множестве “других вселенных” (или, в терминах эмпирического языка, внеметагалактических объектов) с качественно различными свойствами. Инфляционная теория признает, т. о., мегаскопическое нарушение принципа единообразия Вселенной и вводит дополнительный ему по смыслу принцип бесконечного многообразия Вселенной. Тотальность этих вселенных И. С. Шкловский предложил назвать “Метавселенной”. Инфляционная космология в специфической форме возрождает, т. о., идею бесконечности Вселенной (Метавселенной) как ее бесконечного многообразия. Объекты, подобные Метагалактике, в инфляционной космологии часто называют “минивселенными”. Минивселенные возникают путем спонтанных флуктуации физического вакуума. Из этой точки зрения вытекает, что начальный момент расширения нашей Вселенной, Метагалактики не обязательно должен считаться абсолютным началом всего. Это лишь начальный момент эволюции и самоорганизации одной из космических систем. В некоторых вариантах квантовой космологии понятие Вселенной тесно увязывается с существованием наблюдателя (“принцип соучастия”). “Порождая на некотором ограниченном этапе своего существования наблюдателейучастников, не приобретает ли, в свою очередь. Вселенная посредством их наблюдений ту осязаемость, которую мы называем реальностью? Не есть ли это механизм существования?” (А. Дж. Уилер). Смысл понятия Вселенной и в этом случае определяется теорией, основанной на различении потенциального и актуального существования Вселенной как целого в свете квантового принципа.
3. Вселенная в астрономии (наблюдаемая, илиастрономическая Вселенная) - область мира, охваченная наблюдения
ми, а сейчас отчасти и космическими экспериментами, т. е. “все существующее” с точки зрения имеющихся в астрономии наблюдательных средств и методов исследования.
Астрономическая Вселенная представляет собой иерархию космических систем возрастающего масштаба и порядка сложности, которые последовательно открывались и исследовались наукой. Это-Солнечная система, наша звездная система. Галактика (существование которой было доказано В. Гершелем в 18 в.). Метагалактика, открытая Э. Хабблом в 1920-х гг. В настоящее время наблюдению доступны объекты Вселенной, удаленные от нас на расстоянии ок. 9-12 млрд световых лет.
На протяжении всей истории астрономии вплоть до 2-й пол. 20 в. в астрономической Вселенной были известны одни и те же типы небесных тел: планеты, звезды, газопылевое вещество. Современная астрономия открыла принципиально новые, ранее не известные типы небесных тел, в т. ч. сверхплотные объекты в ядрах галактик (возможно, представляющие собой черные дыры). Многие состояния небесных тел в астрономической Вселенной оказались резко нестационарными, неустойчивыми, т. е. находящимися в точках бифуркации. Предполагается, что подавляющая часть (до 90-95%) вещества астрономической Вселенной сосредоточена в невидимых, пока ненаблюдаемых формах (“скрытая масса”).
Лит.: Фридман А. А. Избр. труды. М., 1965; Бесконечность и Вселенная. М., 1970; Вселенная, астрономия, философия. М., 1988; Астрономия и современная картина мира. М., 1996; Bondy H. Cosmology. Cambr., 1952; Munit!. M. Space, Time and Creation. N.Y., 1965.
В. В. Казютинский

Новая философская энциклопедия: В 4 тт. М.: Мысль . Под редакцией В. С. Стёпина . 2001 .

Системная модель Вселенной.
Вопрос - является ли Вселенная системой - носит, определённо, риторический характер. В то же время вид системности, которой можно было бы аппроксимировать Универсум до сих пор остаётся предметом дискуссии. В основе представления (как паллиатив по умолчанию) лежит самое «беззубое» определение системы, когда под системой подразумевается множество объектов, пребывающих в отношениях и связях. Однако такой подход, предельно демократичный (по кажущейся широте охвата) давно исчерпал собственный эвристический заряд. Действительно, непонятно каким образом под одно и то же вялое определение системы «подвести объекты», системные составляющие которых пребывают в определённом и жёстком взаимодействии и «вольные» отношения объектов Духосферы. Специфическим образом эта проблема решена на уровне частных наук, каждая из которых, так или иначе пытаясь описать определённый аспект Вселенной, представляет её системой в том или ином, специфичном для данной науки, виде. Так, например, биологические системы не могут быть описаны языком физики и наоборот. Правда, биологи не претендуют на описание Вселенной как целого, в отличие от физиков.
Что касается физики то здесь, с моей точки зрения, совершенно определённым образом присутствует многократно повторяемый акт мазохизма, выражающийся в попытках описать материальную Вселенную как целое языком физики. По этому вопросу я неоднократно высказывался, в том числе на философской части форума SciTecLibrary откуда и приведу несколько, слегка подправленных, недлинных цитат.
« Весь ХХ век находился под существенным давлением физики. этого периода характеризовалась претензиями на истину в огромном диапазоне тем и направлений современной науки. Дело, однако, осложнялось тем, что эта наука зачастую превышала отпущенный ей лимит общности и, высказываясь, попадала в центр мишени наивности, если не сказать сильнее. Ощущая себя свободной, использовала свободные – не обеспеченные философски – модели устройства макро- и микромира, нередко использовался парадокс, как форма представления модели. Самые известные несуразности – планкеон и фридмонная цивилизация. Особое место занимает Эйнштейн и Фридман.» Эти великие теоретики, несмотря на философскую непроработанность своих представлений, опередили философов, дав сильный толчок развитию представлений о рождении и развитии Вселенной. «В целом, я охарактеризовал бы эту сторону проявлений физики (с точки зрения её влияния на науку и философию) как полезное очарование дилетантизмом. Но не в этом дело.
Вряд ли, кто-нибудь из серьёзных учёных станет оспаривать утверждение, что Мир представляет собой СИСТЕМУ. Исходя из этого представления, Мир как целое должен обладать свойствами, не сводимыми к сумме свойств составляющих его объектов. Свойство целостности может быть проявлено в бытии. Для нас – элементов рассматриваемой системы - в инобытии. Из этого положения следует, что Система, представляющая нашу Вселенную, должна быть ОТКРЫТОЙ. ФЗИКА, по определению, может оперировать только замкнутыми – консервативными системами. Ситуация не меняется, если физически открытую систему помещают в придуманную физическую среду с определёнными физическими параметрами. Условная внешняя среда, в этом случае, всё равно остаётся средой замкнутой, ограниченной заданными параметрами. Как ни назови эту внешнюю оболочку – вакуум ли, эфир ли – она обязательно будет наделена вполне определёнными физическими параметрами – удобными теоретику. Это – профанация науки. Шалости такого рода – бесплодны, а теперь уже и вредны – вводят в заблуждение. В ХХI веке уже должно быть неприлично пользоваться продуктивными ошибками начала прошлого века.»
Как же быть, как получить непротиворечивый взгляд на Вселенную как систему, не покушаясь на её целостность? Всё очень просто - следует пойти давно и хорошо известным путём, изложенным, например, Ахлибининским [А.В.Ахлибининский, В.А.Асеев, И.М.Шорохов. Принцип детерминизма в системных исследованиях. Ленинград, 1984.с.52]. Следует выбрать одно главное противоречие, полагая его системообразующим, затем в процессе его разрешения проявляется принципиальная схема объекта, соответствующая исходным условиям. Полученный скелет системы должен ещё обрасти «мясом», приближающим абстракцию к реальности, после чего уже можно судить о той или иной степени достоверности разработанной модели. Это общий подход к разработке моделей реальных объектов, которые можно считать системой. В качестве «мяса» следует применять физику и теорию информации, как формы представления реальности, понижающие уровень абстракции модели - приближающие её к уровню обыденного сознания. Такой подход позволяет в результате построить теорию которая может быть подвергнута процедурам верификации и даже онтологизации.
На основе изложенного подхода была построена Системная Модель Вселенной, наиболее полно изложенная в только что вышедшей из печати книги [Никитенко Л.К. Принципиальные основы системной модели Вселенной. М. 2011; 250 с. 2 рис.].
Системная модель Вселенной (СМВ) это новая имплицитная теория, описывающая Вселенную как системное целое, выращенная из разрешения одной – единственной - сформированной антиномии: «Мир - это система (в смысле данного определения), в которой существует категорический запрет на существование объектов - несистем и которая, тем не менее, в конечном счете, состоит именно из объектов - несистем». Разрешение противоречия приводит к схеме двухуровневой динамической системы. Первый – латентный (субстанциальный) уровень, на котором происходят все взаимодействия. Второй – явленный (потенциальный), визуализирующий и потенциально объективирующий мир через интеграцию отдельных взаимодействий в привычные нам формы. В общем контексте пансистемности рассмотрены Дух, Душа и Социум. Установлено нераздельное единство Духа и Материи. Показано отсутствие примата одного над другим. Теория охватывает все основные аспекты Вселенной, позиционируя себя как теорию, претендующую на онтологизацию. В конце книги помещён автореферат теории. Кроме того, автореферат опубликован в интернете и помещён по адресу: .
P.S. Должен заметить, что проблема, затронутая в этой короткой статье не может быть рассмотрена и адекватно разрешена в формате статьи – необходима более широкая форма. Именно поэтому в своём первом выступлении на форуме я вынужден ссылаться на книгу и автореферат. Замечу также, что по результатам этой работы опубликовано несколько статей, которые также доступны в Интернете. При желании познакомиться с ними ссылку я предоставлю. LKN

Синергетические процессы, эволюция и развитие.

Наши научные и философские знания постоянно совершенствуются. В итоге приходится пересматривать, казалось бы, устоявшиеся представления о мире. В связи с этим много новшеств привнесла с собой синергетика (от греч. sinergia - совместное действие), которую часто называют наукой самоорганизации сложных систем.

Возраст этой науки отсчитывается от 1969 г. Классиками синергетики считаются бельгийский ученый русского происхождения И. Пригожий и немец Г. Хакен. Выдающийся вклад в развитие синергетики внесли отечественные ученые В.И. Арнольд, H.H. Моисеев, A.A. Самарский, СП. Курдюмов.

Взаимодействие частей синергетических систем описывается нелинейными уравнениями. Их решение, которое, как правило, осуществляется с использованием ЭВМ, приводит к целому ряду актуальнейших результатов. Перечислим основные из них. Некоторое время система может эволюционизировать по некоторому руслу. Но такой процесс неизбежно сопровождается достижением критических состояний, при которых система переходит в неустойчивое состояние (состояние джокера). Малейшие возмущения выводят систему из этого состояния и приводят к бид5уркации (от лат. bifurcus - раздвоенный). Наступающие затем переходные процессы могут привести к относительно устойчивым структурам, аттракторам (от лат. attrahere- притягивать), для которых характерны определенные параметры порядка, которые доминируют над всеми остальными степенями свободы систем. Чем меньше у системы параметров порядка, тем легче ею управлять. Аттрактором может быть и хаос, в таком случае говорят о странном аттракторе. Хаос интерпретируется не как абсолютно деструктивное начало, а в качестве неупорядоченной сложности, которая способна к упорядочению.

Согласно синергетическим представлениям, эволюционизируют (от лат. evolution- развертывание) все системы - физические, химические, геологические, биологические, социальные, в том числе экономические. Что касается стадий эволюции - движения по руслу, достижения неустойчивого состояния (джокера), бифуркации, достижения аттракторного состояния, - то все они указаны выше. Сложнее вопрос с уяснениием природы развития, под которым понимают наиболее радикальные преобразования - те самые, осмысление которых вынуждает обратиться к новым теориям. Развитие предстает, например, как переход от физических систем к биологическим, от них - к социальным организованностям и т.д.

В настоящее время потенциал синергетики используется, пожалуй, во всех науках. Отталкиваясь от этого факта, некоторые исследователи полагают, что синергетика является единой теорией эволюции. Именно она мол представляет всеобщие законы эволюции. На наш взгляд, такое мнение является ошибочным. И вот почему. Науки отличаются друг от друга своими концептами. Но в синергетике не произошло их объединение. Если, например, в биологии используются синергетические представления, то им вменяется биологическая специфика. Новые результаты будут получены в пределах этой специфики. Они не выведут в область экономики. Соответственно использование аппарата синергетики не позволяет из экономики перейти в политологию. Таким образом, пока нет оснований утверждать, что создана единая теория эволюции и развития. Иначе говоря, в трансдисциплинарной сети наук теории взаимосвязаны друг с другом, но они не объединяются в одной универсальной концепции.

Экономические синергетические процессы.

В осмыслении многих экономических процессов можно добиться прогресса за счет обращения к потенциалу синергетики. Так, действие "невидимой руки" А. Смита, приводящей к установлению свободного рынка понимается ныне как процесс организации, приводящий к достижению аттракторного состояния. Еще один синергетический эффект проявляется в том, что эволюция экономической системы приводит к странному характеру, вследствие чего будущее может быть предсказано лишь на определенное время. В экономических системах существует спектр времен, какой именно, определяется видом нелинейных эволюционных уравнений. До обращения к аппарату нелинейных уравнений экономисты определяли периоды некоторых колебаний, например, так называемых долгосрочных (40-50 лет) волн Н.Д. Кондратьева или среднесрочных (7- 12 лет) волн К. Жюгляра на основе статистических данных. Было непонятно, почему они то присутствуют, то отсутствуют. Теперь становится ясным, что периоды экономических процессов могут быть как малыми, так и большими, их количественные параметры можно и следует рассчитать. Огромнейшее значение в управлении экономическими ситуациями придается состояниям равновесия. Выяснилось, что состояний равновесия может быть много (сравните: равновесие по Парето, равновесие по Штакельбергу, равновесие по Нэшу и т.д.). Может существовать множество точек равновесия, которые после их соответствующей оценки могут быть ранжированы по степени их эффективности. Только после этого выясняется, какому аттрактору следует отдать предпочтение.

Современный экономист должен быть очень чутким к значимости флуктуации и бифуркаций, равно как и к состоянию хаоса, в том числе и к процессам выхода из него. Если состояние возможного хаоса чревато катастрофой, то его следует избегать всеми возможными способами. Крайне важно экономисту руководствоваться этикой ответственности. Экономическими процессами следует управлять, иначе не избежать беды. В связи с этим следует отметить, что определение синергетики в качестве науки о самоорганизации явно устарело. Организация экономических систем регулируется, следовательно, она не является самоорганизацией. Скорее следует рассуждать о направляемой организации, которая определяется уровнем понимания экономических процессов, теми смыслами, которые они реализуют.

Динамические, стохастические и статистические закономерности.

Вероятностная революция в современной науке. Детерминизм и индетерминизм. В науке и философии исключительно актуальное значение придается принципу детерминизма (от лат. determinare- определять), согласно которому настоящее состояние любой системы является следствием предыдущего и причиной последующего. Если этого нет, то говорят об индетерминизме. Согласно индетерминизму появление некоторого события не поддается никакому объяснению.

До появления квантовой механики в физике господствовал так называемый лапласовский детерминизм, названный по имени выдающегося французского математика и физика П. Лапласа. По его мнению, ум человеческий способен безупречным образом охватить все состояние Вселенной - как ее прошлого, так и его будущего. "Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, и относительное положение всех ее составных частей, если бы вдобавок он оказался достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в одной формуле движения величайших тел Вселенной наравне с движениями легчайших атомов: не осталось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее, предстало бы перед его взором". Все это знаменитый ученый утверждал в книге, посвященной теории вероятностей. В XIX в. считалось, что вероятностные представления согласуются с идеалом достоверного (однозначного) описания действительности. Их необходимость объясняли недостаточностью данных, при наличии которых можно было бы избежать вероятностных представлений.

Создание квантовой механики показало, что сами квантовые объекты ведут себя вероятностным образом. Они не обладают такими скрытыми параметрами, которые бы позволяли надеяться на описание их поведения достоверным образом, т.е. без привлечения теории вероятностей. В связи с этим многие ученые стали приверженцами концепции не лапласовского, а вероятностного детерминизма, в рамках которого прошлое и будущее изучаемой системы может предсказываться не однозначно, а лишь с той или иной степенью вероятности, т.е. многозначно. Лапласовский детерминизм воспринимается как упрощение, причем далеко не всегда правомерное, вероятностного детерминизма.

Итак, на сегодняшний день в физике, а также в абсолютном большинстве наук о природе различают закономерности трех типов: динамические (с однозначной предсказуемостью), стохастические (от греч. stochasis - догадка) и статистические (от лат. status- состояние). Статистические закономерности связаны со статистикой и тем типом вероятности, который характерен для нее. Принципиально другой характер имеют стохастические закономерности. На этот раз имеется в виду, что объекты, например элементарные частицы, ведут себя вероятностным образом. Иначе не бывает. Динамические закономерности оцениваются в качестве упрощений стохастических закономерностей. Таким образом, реально существуют только стохастические закономерности. Основу динамических и статистических закономерностей составляют одни и те же - а именно стохастические - процессы. Описанные новации не отменили актуальность представления о детерминизме. На смену лапласовскому детерминизму пришел вероятностный. Имеется в виду, что существует преемственная связь между прошлым, настоящим и будущим, но она является вероятностной.

До сих пор принцип детерминизма связывался в основном с определенностью наук о природе. Многие философы считали, что детерминизм характерен исключительно для природных явлений: поскольку люди в качестве творческих существ обладают свободой принятия решений, постольку, мол, нельзя сказать, что будущее определяется настоящим. Но в свете вероятностного детерминизма этот аргумент не представляется безупречным. Действительно, социальное будущее невозможно без настоящего, его параметры предсказываются вероятностным образом. Совершая тот или иной поступок, человек руководствуется некоторыми ценностями, определяет в соответствии с ними поле возможных целей и совершает тот или иной выбор. Таким образом, в области социальных процессов вероятностный детерминизм также имеет место, но по своему статусу он является ценностно-целевым.

Итак, и в естествознании, и в обществознании в XX в. произошли важнейшие новации. От лапласовского детерминизма отказались. Теперь в области наук об обществе руководствуются представлением о вероятностном детерминизме. Интересно отметить, что вероятностная революция произошла не только в физике, но и в интересующей нас экономике, где она началась со знаменитой книги Дж. фон Неймана и О. Моргенштерна1 (1944). Начиная с 1970-х гг. в экономической науке так называемый вероятностно-игровой подход, включающий, в частности, теорию игр и теорию ожидаемой полезности, занял доминирующие высоты. В экономике также различают стохастические (неоднозначные), динамические (однозначные) и статистические закономерности. Все экономические явления и законы имеют стохастический характер. При известных ситуациях можно руководствоваться динамическими закономерностями, считая их некоторым приближением к стохастическим соотношениям.

Итак, в науке XX в. случилась актуальнейшая новация, выразившаяся в переходе от лапласовского детерминизма к вероятностному. Можно констатировать, что случилась вероятностная революция. В этой связи актуальнейшее значение приобрел концепт вероятности, который представляет неоднозначность самой природы различных явлений. Представить его себе наглядно невозможно. Величина вероятности есть степень возможности появления того или иного события. Вероятностные представления довольно необычны. Всегда находятся люди, которые полагают, что от них следует отказаться, что они неправильны. Им хочется заменить их какими-то прозрачными, очевидными представлениями. Увы, такая позиция устарела.

Гипотеза Большого взрыва и история Вселенной.

Согласно физическим и космологическим данным возраст нашей Вселенной составляет около 13,7 млрд лет. Ее началом стал так называемый Большой взрыв. Представим историю Вселенной в табличном виде, а затем приступим к ее обсуждению.

Таблица 5.1.

Читатель вправе изумиться: "Как же ученым удается воссоздать далекое прошлое?" Любая наука позволяет осуществлять как предсказания, так и ретросказания, которые удостоверяются соответствующими эмпирическими изысканиями. Именно так обстоят дела и в космологии. Предсказания и ретросказания увязываются в единый узел, космологию. Часто космологи рассуждают по такой схеме. "Предположим, что был Большой взрыв, в таком случае должны наблюдаться такие-то его последствия. Обратимся к космологическим наблюдениям".

Итак, описанная выше история Вселенной позволяет утверждать, что существует множество объектов, изучаемых физикой и космологией, в частности вещество, излучение, звездные и планетные системы.

Пространство и время.

С самого начала зарождения философии в ней неослабевающее внимание уделялось темам пространства и времени. Что они собой представляют? На этот вопрос удалось найти приемлемые ответы лишь после возникновения научных теорий. Пространство и время являются такими, какими они фигурируют в научных теориях.

В механике Ньютона использовалось представление о пространстве и времени как особых субстанциях, причем абсолютных, т.е. не зависящих от чего-либо. Пространство представляли себе как не имеющий каких-либо границ простор. Время же интерпретировали как самостоятельный образ движения. Создание специальной теории относительности А. Эйнштейном привело к решающим изменениям научных представлений о пространстве и времени. Было показано, что пространство и время не являются какими-то субстанциями. Иначе говоря, субстанциональная концепция пространства и времени была опровергнута. Каждый физический объект обладает пространственными (длина, ширина, высота, площадь, объем) и временными (длительность) характеристиками. Пространственные характеристики тел принято называть протяженностями. Таким образом, пространство - это протяженности объектов. Время - это длительности объектов. Ученые также выяснили, что протяженности и длительности зависят от физических взаимодействий. Не существуют единое мировое пространство и единое мировое время. Что происходит с протяженностью и длительностью объекта, определяется теми взаимодействиями, в которых он участвует. Например, длительность объектов нарастает различными темпами. Пространственные и временные характеристики коррелируют друг с другом. В этом, разумеется, нет ничего необычного, ибо все характеристики физических объектов находятся в корреляционной взаимосвязи друг с другом. Интересно, что выводы, следующие из физических теорий, часто воспринимались в штыки, особенно теми людьми, которые считали представление о пространстве и времени как абсолютных субстанциях очевидным, не подлежащим пересмотру. Сотрясение очевидностей люди часто воспринимают болезненно.

В записях различных законов протяженности обычно обозначаются значком г. Используются также обозначения длины (/), площади (5), объемов (V). Длительности обозначаются значком и Время считается одномерным (для его записи достаточно одной переменной), необратимым (его невозможно повернуть вспять) и однородным (при увеличении длительности объектов их законы остаются одними и теми же). Пространство считается трехмерным, изотропным (если повернуть объект на какой-то угол, то это не приведет к изменению вида законов) и однородным (изменение протяженности объекта не приводит к изменению законов).

Есть веские основания считать, что в области микромира пространственно-временные характеристики обладают необычными свойствами. Например, пространство может быть девятимерным. Закончив с физикой, обратимся к данным других наук, прежде всего экономики.

После вышеописанных достижений физики было естественным предположить, что в мире геологических, биологических и социальных процессов пространство и время обладают определенной спецификой. Именно в этой связи говорят, например, об экономическом времени и пространстве. Но действительно ли они существуют? На этот актуальный для науки вопрос не дают адекватного ответа ни экономисты, ни философы. Пофилософствуем относительно него!

В записи экономических законов фигурируют значки / и г. Следовательно, экономическая наука изучает пространственные и временные характеристики. Но и длительности, и протяженности измеряются в физических характеристиках (секунды, часы, сутки, метры, километры, кубические метры и т.д.). Но физические характеристики интересуют экономистов лишь постольку, поскольку им вменяются экономические ценности. Таким образом, экономическое пространство и время - это соответственно физические пространство и время в их экономической значимости. Поэтому лишь на первый взгляд экономические законы имеют дело с физическим пространством и временем как таковым. Справедливости ради перечислим три главные точки зрения на природу экономического пространства и времени.

  • o Экономическое пространство и время не существуют.
  • o Экономическое пространство и время есть соответственно физическое пространство и время в их экономической значимости.
  • o Экономическое пространство и время существуют безотносительно к физическому пространству и времени (сторонники третьей точки зрения, как правило, полагают, что экономическое пространство и время все еще ждут своего открытия).

При описании успехов синергетики уже отмечалось, что удалось обнаружить спектры экономических периодов. Столь же актуально определение дискретностей пространственного масштаба - например, при установлении размеров рынков. Нет сомнений, что обеспечение эффективности экономических операций невозможно без тщательного учета их пространственного и временного статуса.

  • - На мой взгляд, вероятностное описание процессов не дает их полной картины. Все становится зыбким, недостаточно точным. Вспомните афоризм А. Эйнштейна: "Бог не играет в кости!"
  • - Ссылка на авторитет не является доказательством. Мы должны принимать науку такой, какой она стала в результате ее развития. В таком случае придется признать, что на смену однозначным представлениям пришли вероятностные.
  • - Но они же дают не точное, а лишь приблизительное описание.
  • - Вы ошибаетесь. Именно вероятностные концепции представляют изучаемые явления наиболее исчерпывающим образом. Когда же используются однозначные представления, то как раз они являются упрощениями.
  • - Выходит, что наука становится все более непонятной?
  • - Она становится все более рафинированной. Непонятной она кажется лишь тому, кто ориентируется на теории здравого смысла.
  • 1. Синергетика позволила существенно уточнить научные, в том числе экономические, представления об организации и эволюции.
  • 2. Принцип детерминизма состоит в том, что настоящее состояние определяет будущее, а само является порождением прошлого.
  • 3. Динамические законы - это законы однозначной предсказуемости.
  • 4. Статистические законы - это законы, основанные на статистике, и в этой связи используются вероятностные представления.
  • 5. Стохастические законы - это законы, согласно которым каждый объект ведет себя вероятностным образом.
  • 6. На смену лапласовскому детерминизму пришел вероятностный детерминизм.
  • 7. В современной науке произошла вероятностная революция.
  • 8. Современная экономическая наука переведена на рельсы вероятностно-игрового подхода.
  • 9. В вопросе о происхождении и эволюции Вселенной на сегодняшний день нет научной альтернативы гипотезе Большого взрыва.
  • 10. Пространство - это протяженности объектов.
  • 11. Время - это длительности объектов.

Будучи философом или стараясь таковым быть, очень трудно судить о том, как устроена Вселенная, только с точки зрения современной физики. В списке философских дисциплин существует так называемая онтология, что в дословном переводе с греческого значит «наука о бытие». Она занимается в том числе проблемами существования нашей с вами Вселенной, её рождением и возможной смертью. Не стоит думать, что знания из области физики не задействуются в этом процессе, ведь любой ученый - тоже в какой-то мере философ, выдвигающий некую бездоказательную идею, другими словами, теорию, и идущий к ней не только путем эмпирики, но и размышлениями о фундаментальных категориях в рамках всего человечества. Но взгляд на мир формируется отнюдь не путем сухого принятия на веру научных источников. Мыслить самостоятельно - вот наше с вами высшее благо. Итак, давайте пофилософствуем.

Начало всего

Прежде чем спрашивать себя о том, как устроена Вселенная, надо понять, с чего всё началось. Существует множество предположений на этот счет. Например, согласно

древнеиндийской легенде, рождение Вселенной произошло из очень тонкой материальной субстанции, которая и сама состояла из мельчайших частиц материи. Но в данный момент самая основная и общепринятая теория - теория большого взрыва. Её выдвинул русский ученый Александр Фридман еще в начале двадцатого века. Одновременно подобные исследования вел Эдвин Хаббл, известный американский астроном. Теория опровергала то, что Вселенная стационарна, не имеет границ и «населена» бесконечным количеством звёзд. Представьте, что в некоем пространстве находилось своеобразное «космическое яйцо» (или некая точка), которое в определенный момент взорвалось и породило всё, что теперь именуется космосом. Такой подход не отрицает ни материалистической идеи, ни идеалистической. Вполне можно предположить, что возникновение Вселенной - дело рук некого Творца, в таком случае это всего лишь загоняет его действия во временные рамки.

Динамическая Вселенная

Будда учил, что одна из особенностей нашего мира - в бесконечном непостоянстве всего сущего. И эта картина динамической Вселенной легла впоследствии в основу буддизма.

Надо сказать, что современное научное представление о том, как устроена Вселенная, схоже по своим составляющим с восточной философией. В нашем бытие большая часть мельчайших частиц конструктора мироздания прикована к ядерным, молекулярным и атомным структурам, что, в свою очередь, означает отсутствие статичности и подвижность. Когда атомы пребывают в состоянии возбуждения, электроны их выскакивают на довольно высокие энергетические уровни, а затем, возвращаясь в состояние покоя, начинают излучать свет, находящийся на определенной частоте. По этим линиям спектра определяют, к какому элементу принадлежит атом, породивший этот свет. Когда ученые-астрономы смотрят на линии от отдаленных звёзд, они замечают смещение в красную сторону. Иными словами, частота каждой из них гораздо ниже, чем точно такой же луч на Земле. Это может означать только одно - звезды постепенно удаляются от нашей планеты. Чем дальше они находятся от Солнечной системы, тем более выражен эффект красного смещения и тем быстрее они «убегают».

Заключение

Ответить на вопрос о том, как устроена Вселенная, можно так: это некая действительность, все элементы которой находятся в постоянном движении и удаляются друг от друга, как будто после взрыва. Считается, что в какой-то момент возникнет обратный эффект. Вселенная начнет сужаться, пока не вернется в своё исходное состояние. Но мы этого, конечно, не застанем.