28.10.2021

Изменение металлических свойств в периоде. Как изменяются металлические свойства элементов в периодах, группах и подгруппах? Справочный материал для прохождения тестирования


Тема: «Изменение свойств элементов и их соединений в зависимости от положения в Периодической системе»

Тип урока: усвоение новых знаний.

Цели урока:

Обучающая: закрепить знание причины изменения свойств элементов на основании положения в системе; научить обоснованно объяснять и сравнивать свойства элементов, а также образованных ими простых и сложных веществ; научить давать полную характеристику химического элемента в ПСХЭ.

Развивающая: продолжить формирование умений сравнивать, обобщать, прогнозировать и объяснять свойства веществ, устанавливать причинно-следственные связи, делать выводы, уметь выделять главное из общего. Совершенствование коммуникативных умений и информационно-познавательной компетентности, развивать самостоятельность и творчество при решении практических задач.

Воспитательная: воспитание ответственного отношения к учёбе, трудолюбия, работоспособности, правильной самооценки, умение работать в коллективе, осуществление экологического, гигиенического и нравственного воспитания, формирование здорового образа жизни.

Ход урока

    Организационный момент (1 мин)

    Актуализация знаний (10 мин)

Проверка знаний учащихся.

    Порядковый номер показывает…

    Номер периода показывает…

    Номер группы показывает…

    Положение элемента в ПСХЭ (период, группа).

    Строение атома кислорода.

Химический диктант по вариантам : предполагает быструю работу, используя ПСХЭ Д.И. Менделеева.

1. Указать элемент, в атоме которого:

    а) 25 протонов (марганец) б) 13 электронов (алюминий)

    а) 41 протон (ниобий) б) 20 электронов (кальций)

2. Назвать два элемента, в атоме которых:

    три энергетических уровня (любой элемент третьего периода)

    пять энергетических уровней (любой элемент пятого периода)

3. Определить два элемента, в атоме которых на последнем энергетическом уровне:

    4 валентных электронов (любой элемент четвертой группы главной подгруппы)

    7 валентных электронов (любой элемент седьмой группы главной подгруппы)

4. Указать место положения элементов в ПСХЭ: период и группа.

    а) № 37 (рубидий) б) № 30 (цинк)

    а) № 24 (хром) б) № 50 (олово)

5. Привести строение атома с порядковым номером

    14 (кремний 2; 8; 4)

    16 (сера 2; 8; 6)

Проверка.

II. Изучение нового материала (32 мин)

План изложения

1. Причины изменения свойств элементов на основании положения в ПСХЭ:

а) в периодах (малых, больших);

б) группах, главных подгруппах;

2. Изменение свойств химических элементов и образованных ими соединений:

а) в периодах;

б) группах, главных подгруппах.

3. Значение Периодического закона и Периодической системы химических элементов Д.И. Менделеева.

4. План характеристики химического элемента на основании его положения в ПСХЭ.

Формулировка Периодического закона Д. И. Менделеева.

Раздать таблицы!

(20 мин) В чем же причины изменения свойств химических элементов? Каковы причины периодичности? Чтобы ответить на данные вопросы сравним атомы элементов:

а ) Na – Al - P

б ) Na – K - Rb

1. Какой заряд ядра данных атомов, что с ним происходит?

2. Определить количество электронов на внешнем энергетическом уровне. Что наблюдается?

3. Сколько энергетических уровней в атомах данных элементов, что наблюдается?

4. Как Вы считаете, что же происходит с атомным радиусов, вследствие данных изменений?

а) к концу периода;

б) к концу группы, главной подгруппы.

Ответ:

а) к концу периода атомный радиус уменьшается вследствие усиленного взаимопритяжения ядра атома и электронов внешнего энергетического уровня (работа с таблицей).

б) к концу группы, главной подгруппы атомный радиус возрастает т. к. увеличивается количество энергетических уровней в атоме.

5. Сказываются ли такие изменения атомных радиусов в периодах и группах, главных подгруппах на способность атомов отдавать электроны, или их присоединениях?

Энергия ионизации – энергия, необходимая для отрыва слабо связанного электрона от атома.

Металличность – способность легко отдавать электроны.

Неметалличность – способность легко принимать электроны.

Ответ: При уменьшении атомного радиуса ослабевает способность атомов отдавать электроны, усиливается способность принимать электроны. К концу периода атомы элементов легче принимают электроны, что обеспечивает проявление неметалличности. При увеличении атомного радиуса возрастает способность атомов отдавать электроны. К концу группы, главной подгруппы атомы элементов легче отдают электроны, что обеспечивает проявление металличности.

6. Электроотрицательность – способность атомов элементов в соединениях оттягивать на себя электронную плотность. Самый электроотрицательный элемент – фтор.

Элетроотрицательность при движении в периодах слева направо увеличивается, в группах сверху вниз – уменьшается.

7. В чем же причина периодичностного изменения свойств элементов?

Причиной периодичности и является изменение строения внешнего, а также предвнешнего энергетического уровня; повторение числа электронов внешнего (предвнешнего) энергетического уровня.

Периодичность изменения свойств элементов сказывается и на свойствах простых веществ, образованных ими и на свойствах более сложных соединений: оксидов и гидроксидов.

Свойство

По периоду слева направо

По группе сверху вниз

Заряд ядра

Число валентных электронов

Число энергетических уровней

Атомный радиус (самый маленький атомный радиус имеет F фтор)

Энергия ионизации (самая высокая энергия ионизации у Fr франция)

Металлические свойства, восстановительная активность (самый сильный металл - Fr франций)

Неметаллические свойства, окислительная активность (самый сильный неметалл - F фтор)

Электроотрицательность (самый электроотрицательный элемент - F фтор)

Основные свойства оксидов и гидроксидов (относительно Fr франция)

Кислотные свойства оксидов и гидроксидов (относительно F фтора)

На данном уроке мы познакомимся с планом характеристики химического элемента по его положению в ПСХЭ.

В данной характеристике учащиеся показывают свои знания периодического закона Периодической системы и умения ими пользоваться правильно.

(12 мин) План характеристики химического элемента по его положению в ПСХЭ Д.И. Менделеева

1. Название элемента, химический знак, порядковый номер, относительная атомная масса; номер периода (большой или малый), номер группы, подгруппа (главная или побочная).

2. Строение атома элемента:

а) заряд ядра атома; количество протонов, нейтронов в ядре атома; количество электронов в атоме;

б) электронная формула атома и электронно-графическое изображение; семейство s-, р-, d-, f-элементов.

3. Металлический или неметаллический элемент.

4. Высшая валентность.

5. Высший оксид, характер высшего оксида (основный, кислотный, амфотерный); химические свойства высшего оксида (предложить несколько уравнений реакций).

6. Высший гидроксид, характер гидроксида (основание, кислота); химические свойства гидроксида (составить несколько уравнений реакций).

7. Летучее водородное соединение (для неметаллов).

В качестве примера для закрепления учащимися знаний можно предложить характеристики металлического (магния) и неметаллического (серы) элементов.

III. Домашнее задание (2 мин)

    Учить записи в тетради.

    Дидактические материалы стр. 41 вариант 1.

    Дайте характеристика по 7 пунктам элементам с порядковыми номерами: 3, 6.

    Хомченко 6.36, 6.37.

Дмитрий Иванович Менделеев открыл периодический закон, согласно которому свойства элементов и образуемых ими изменяются периодически. Данное открытие было графически отображено в таблице Менделеева. По таблице очень хорошо и наглядно видно, как свойства элементов изменяются по периоду, после чего повторяются в следующем периоде.

Для решения задания №2 ЕГЭ по химии нам всего лишь нужно понять и запомнить, какие свойства элементов в каких направлениях изменяются и как.

Всё это отображено на рисунке ниже.

Слева направо растут электроотрицательность, неметаллические свойства, высшие степени окисления и т.д. А металлические свойства и радиусы уменьшаются.

Сверху вниз наоборот: растут металлические свойства и радиусы атомов, а электроотрицательность падает. Высшая степень окисления, соответствующая количеству электронов на внешнем энергетическом уровне, в этом направлении не меняется.

Разберём на примерах.

Пример 1. В ряду элементов Na→Mg→Al→Si
А) уменьшаются радиусы атомов;
Б) уменьшается число протонов в ядрах атомов;
В) увеличивается число электронных слоёв в атомах;
Г) уменьшается высшая степень окисления атомов;

Если посмотреть в таблицу Менделеева, то мы увидим, что все элементы данного ряда находятся в одном периоде и перечислены в том порядке, как они стоят в таблице с лева направо. Что бы ответить на вопрос такого рода нужно просто знать несколько закономерностей изменений свойств в периодической таблице. Так слева направо по периоду металлические свойства падают, неметаллические растут, электроотрицательность растёт, энергия ионизации растёт, радиус атомов уменьшается. По группе сверху вниз металлические и восстановительные свойства растут, электроотрицательность падает, энергия ионизации уменьшается, радиус атомов растёт.

Если вы были внимательны, то уже поняли, что в данном случае уменьшаются радиусы атомов. Ответ А.

Пример 2. В порядке усиления окислительных свойств элементы расположены в ряду:
А. F→O→N
Б. I→Br→Cl
В. Cl→S→P
Г. F→Cl→Br

Как вы знаете, в периодической таблице Менделеева окислительные свойства растут слева направо по периоду и снизу вверх по группе. В варианте Б как раз приведены элементы одной группы в порядке снизу вверх. Значит Б подходит.

Пример 3. Валентность элементов в высшем оксиде увеличивается в ряду:
А. Cl→Br→I
Б. Cs→K→Li
В. Cl→S→P
Г. Al→C→N

В высших оксидах элементы проявляют свою высшую степень окисления, которая будет совпадать с валентностью. А высшая степень окисления растёт слева направо по таблице. Смотрим: в первом и втором вариантах нам даны элементы, находящиеся в одних группах, там высшая степень окисления и соответственно валентность в оксидах не меняется. Cl→S→P – расположены справа налево, то есть у них наоборот валентность в высшем оксиде будет падать. А вот в ряду Al→C→N элементы расположены слева – направо, валентность в высшем оксиде увеличивается у них. Ответ: Г

Пример 4. В ряду элементов S→Se→Te
А) увеличивается кислотность водородных соединений;
Б) увеличивается высшая степень окисления элементов;
В) увеличивается валентность элементов в водородных соединениях;
Г) уменьшается число электронов на внешнем уровне;

Сразу смотрим на расположение этих элементов в таблице Менделеева. Сера, селен и теллур находятся в одной группе, одной подгруппе. Приведены в порядке сверху вниз. Смотрим еще раз на диаграмму выше. Сверху вниз в периодической таблице растут металлические свойства, растут радиусы, падает электроотрицательность, энергия ионизации и неметаллические свойства, количество электронов на внешнем уровне не меняется. Вариант Г сразу исключаем. Если число внешних электронов не меняется, то валентные возможности и высшая степень окисления тоже не меняется, Б и В - исключаем.

Остаётся вариант А. Проверяем для порядка. По схеме Косселя сила безкислородных кислот возрастает с уменьшением степени окисления элемента и увеличением радиуса его иона. Степень окисления у всех трёх элементов одинаковая в водородных соединениях, а вот радиус сверху вниз растёт, значит и сила кислот растёт.
Ответ – А.

Пример 5. В порядке ослабления основных свойств оксиды расположены в ряду:
А. Na 2 O→K 2 O→Rb 2 O
Б. Na 2 O→MgO→Al 2 O 3
В. BeO→BaO→CaO
Г. SO 3 →P 2 O 5 →SiO 2

Основные свойства оксидов ослабевают синхронно с ослабление металлических свойств элементов их образующих. А Ме- свойства ослабевают слева направо или снизу вверх. Na, Mg и Al как раз располагаются слева направо. Ответ Б.

Периодический закон изменения свойств химических элементов был открыт в 1869 году великим русским ученым Д.И. Менделеевым и в первоначальной формулировке звучал следующим образом:

«… свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

Атомным весом в те времена называли атомную массу химического элемента. Следует отметить, что в то время не было ничего известно о реальном строении атома и господствовала идея о его неделимости, в связи с чем Д.И. Менделеев сформулировал свой закон периодичного изменения свойств химических элементов и образованных ими соединений исходя из массы атомов. Позже после установления строения атома закон был сформулирован в следующей формулировке актуальной и в настоящий момент.

Свойства атомов химических элементов и образованных ими простых веществ находятся в периодической зависимости от зарядов ядер их атомов.

Графическим изображением периодического закона Д.И. Менделеева можно считать периодическую таблицу химических элементов, впервые построенную самим великим химиком, но несколько усовершенствованную и доработанную последующими исследователями. Фактически используемый в настоящее время вариант таблицы Д.И. Менделеева отражает современные представления и конкретные знания о строении атомов разных химических элементов.

Рассмотрим более детально современный вариант периодической системы химических элементов:

В таблице Д.И. Менделеева можно видеть строки, называемые периодами; всего их насчитывается семь. Фактически номер периода отражает число энергетических уровней, на которых расположены электроны в атоме химического элемента. Например, такие элементы, как фосфор, сера и хлор, обозначаемые символами P, S, и Cl, находятся в третьем периоде. Это говорит о том, что электроны в этих атомах расположены на трех энергетических уровнях или, если говорить более упрощенно, образуют трехслойную электронную оболочку вокруг ядер.

Каждый период таблицы, кроме первого, начинается щелочным металлом и заканчивается благородным (инертным) газом.

Все щелочные металлы имеют электронную конфигурацию внешнего электронного слоя ns1, а благородные газы — ns 2 np 6 , где n – номер периода, в котором находится конкретный элемент. Исключением из благородных газов является гелий (He) с электронной конфигурацией 1s 2 .

Также можно заметить, что помимо периодов таблица делится на вертикальные столбцы — группы, которых насчитывается восемь. Большинство химических элементов имеет равное номеру группы количество валентных электронов. Напомним, что валентными электронами в атоме называются те электроны, которые принимают участие в образовании химических связей.

В свою очередь, каждая группа в таблице делится на две подгруппы – главную и побочную.

Для элементов главных групп количество валентных электронов всегда равно номеру группы. Например, у атома хлора, расположенного в третьем периоде в главной подгруппе VII группы, количество валентных электронов равно семи:

Элементы побочных групп имеют в качестве валентных электроны внешнего уровня или нередко электроны d-подуровня предыдущего уровня. Так, например, хром, находящийся в побочной подгруппе VI группы, имеет шесть валентных электронов – 1 электрон на 4s-подуровне и 5 электронов на 3d-подуровне:

Общее количество электронов в атоме химического элемента равно его порядковому номеру. Другими словами, общее количество электронов в атоме с номером элемента возрастает. Тем не менее, количество валентных электронов в атоме изменяется не монотонно, а периодически – от 1-го у атомов щелочных металлов до 8-ми для благородных газов.

Иными словами, причина периодического изменения каких-либо свойств химических элементов связана с периодическими изменениями в строении электронных оболочек.

При движении вниз по подгруппе атомные радиусы химических элементов возрастают ввиду увеличения количества электронных слоев. Тем не менее, при движении по одному ряду слева направо, то есть с ростом количества электронов для элементов, расположенных в одном ряду, происходит уменьшение радиуса атома. Данный эффект объясняется тем, что при последовательном заполнении одной электронной оболочки атома ее заряд, как и заряд ядра, увеличивается, что приводит к усилению взаимного притяжения электронов, в результате чего электронная оболочка «поджимается» к ядру:

Вместе с тем, внутри одного периода с ростом количества электронов происходит уменьшение радиуса атома, а также возрастает энергия связи каждого электрона внешнего уровня с ядром. Это означает, что, например, ядро атома хлора будет удерживать электроны своего внешнего уровня намного сильнее, чем ядро атома натрия единственный электрон внешнего электронного уровня. Более того, при столкновении атома натрия и хлора хлор «отберет» единственный электрон у атома натрия, то есть электронная оболочка хлора станет такой же, как у благородного газа аргона, а у натрия — такой же, как у благородного газа неона. Способность атома какого-либо химического элемента оттягивать на себя «чужие» электроны при столкновении с атомами другого химического элемента называется электроотрицательностью. Более подробно про электроотрицательность будет рассказано в главе, посвященной химическим связям, но нужно отметить, что, электроотрицательность, как и многие другие параметры химических элементов, также подчиняется периодическому закону Д.И. Менделеева. Внутри одной подгруппы химических элементов электроотрицательность убывает, а при движении по ряду одного периода вправо электроотрицательность возрастает.

Следует усвоить один полезный мнемонический прием, позволяющий восстановить в памяти то, как меняются те или иные свойства химического элемента. Заключается он в следующем. Представим себе циферблат обычных круглых часов. Если его центр поместить в правый нижний угол таблицы Д.И. Менделеева, то свойства химических элементов будут однообразно изменяться при движении по ней вверх и вправо (по часовой стрелке) и противоположно вниз и влево (против часовой стрелки):

Попробуем применить данный прием к размеру атома. Допустим, что вы точно помните, что при движении вниз по подгруппе в таблице Д.И. Менделеева радиус атома увеличивается, поскольку растет число электронных оболочек, но напрочь забыли, как изменяется радиус при движении влево и вправо.

Тогда нужно действовать следующим образом. Поставьте большой палец правой руки в правый нижний угол таблицы. Движение вниз по подгруппе будет совпадать с движением указательного пальца против часовой стрелки, как и движение влево по периоду, то есть радиус атома при движении влево по периоду, как и при движении вниз по подгруппе, увеличивается.

Аналогично и для других свойств химических элементов. Точно зная, как изменяется то или иное свойство элемента при движении вверх-вниз, благодаря данному методу вы сможете восстановить в памяти то, как меняется это же свойство при движении влево или вправо по таблице.

Основные свойства проявляют металлы, их оксиды и гидроксиды. Кислотные свойства проявляются неметаллы, их соли, кислоты и ангидриды. Существуют также амфотерные элементы, способные проявлять как кислотные, так и основные свойства. Цинк, алюминий и хром являются одними из представителей амфотерных элементов. Щелочные и щелочно-земельные типичные основные свойства, а сера, хлор и азот кислотные.

Так, при реакции оксидов с водой, в зависимости от свойств основного элемента, получается либо основание или гидроксид, либо кислота.

Например:
SO3+H2O=H2SO4 - проявление ;
CaO+H2O=Ca(OH)2 - проявление основных свойств;

Периодическая таблица Менделеева, как показатель кислотно-основных свойств

Таблица Менделеева может помочь в определении кислотно-основных свойств элементов. Если посмотреть на таблицу Менделеева, то можно увидеть такую закономерность, что по горизонтали слева-направо усиливаются неметаллические или кислотные свойства. Соответственно ближе к левому краю находятся металлы, по центру амфотерные элементы, а справа неметаллы. Если посмотреть на электроны и их притяжение к ядру, то заметно, что в левой части элементы имеют слабый заряд ядра, а электроны находятся на s-уровне. В результате таким элементам проще отдать электрон, нежели элементам, находящимся в правой части. Неметаллы имеют достаточно высокий заряд ядра. Тем самым усложняется отдача свободных электронов. Таким элементам проще присоединить к себе электроны, проявляя кислотные свойства.

Три теории для определения свойств

Существуют три подхода, определяющих имеет соединение: протонная теория Бренстеда-Лоури, апротонная электронная теория Льюиса, теория Аррениуса.

Согласно протонной теории кислотными свойствами обладают соединения, способные отдавать свои протоны. Такие соединения были названы донорами. А основные свойства проявляются способностью акцептировать или присоединять протон.

Апротонный подход подразумевает то, что акцептирование и донорство протонов для определения кислотно-основных свойств необязательно. Кислотные свойства по данной теории проявляются возможностью принять электронную пару, а основные, наоборот, отдать эту пару.

Теория Аррениуса является самой актуальной для определения кислотно-основных свойств. В ходе исследования было доказано, что кислотные свойства проявляются, когда при диссоциации водных растворов химическое соединение разделяется на анионы и ионы водорода, а основные свойства - на катионы и ионы гидроксида.

Сильное основание - неорганическое химическое соединение, образованное гидроксильной группой -ОН и щелочным (элементы I группы периодической системы: Li, K, Na, RB, Cs) или щелочноземельным металлом (элементы II группы Ba, Ca). Записываются в виде формул LiOH, KOH, NaOH, RbOH, CsOH, Са(ОН) ₂, Ва(ОН) ₂.

Вам понадобится

  • выпарительная чашка
  • горелка
  • индикаторы
  • металлический стержень
  • Н₃РО₄

Инструкция

Сильные основания проявляют , характерные для всех . Наличие в растворе определяется по изменению окраски индикатора. К пробе с исследуемым раствором добавьте , фенолфталеин или опустите лакмусовую бумажку. Метилоранж дает желтую окраску, фенолфталеин – пурпурную, а лакмусовая бумага окрашивается в синий цвет. Чем сильнее основание, тем интенсивнее окрашивается индикатор.

Если необходимо узнать какие именно щелочи вам представлены, то проведите качественный анализ растворов. Наиболее распространенные сильные основания – лития, калия, натрия, бария и кальция. Основания вступают в реакцию с кислотами (реакции нейтрализации) с образованием соли и воды. При этом можно выделить Са(ОН) ₂, Ва(ОН) ₂ и LiOH. При взаимодействии с ортофосфорной кислотой образуются нерастворимые осадки. Остальные гидроксиды осадков не дадут, т.к. все соли К и Na растворимы.
3 Са(ОН) ₂ + 2 Н₃РО₄ --→ Ca₃(PO₄)₂↓+ 6 H₂О

3 Ва(ОН) ₂ +2 Н₃РО₄ --→ Ва₃(PO₄)₂↓+ 6 H₂О

3 LiOH + Н₃РО₄ --→ Li₃РО₄↓ + 3 H₂О
Процедите их и высушите. Внесите высушенные осадки в пламя горелки. По изменению окраски пламени можно качественно определить ионы лития, кальция и бария. Соответственно вы определите где какой гидроксид. Соли лития окрашивают пламя горелки в карминово-красный цвет. Соли бария – в зеленый, а соли кальция – в малиновый.

Оставшиеся щелочи образуют растворимые ортофосфаты.

3 NaOH + Н₃РО₄--→ Na₃РО₄ + 3 H₂О

3 KOH + Н₃РО₄--→ K₃РО₄ + 3 H₂О

Необходимо выпарить воду до сухого остатка. Выпаренные соли на металлическом стержне поочередно внесите в пламя горелки. Там, где находится соль натрия – пламя окрасится в ярко-желтый цвет, а ортофосфат калия – в розово-фиолетовый. Таким образом имея минимальный набор оборудования и реактивов вы определили все данные вам сильные основания.

Свойства химических элементов зависят от числа электронов на внешнем энергетическом уровне атома (валентных электронов). Количество электронов на внешнем уровне химического элемента равно номеру группы в коротком варианте Периодической системы. Таким образом, в каждой подгруппе химические элементы имеют сходное электронное строение внешнего уровня, а значит и сходные свойства.

Энергетические уровни атомов стремятся оказаться завершенными, т. к. в этом случае они обладают повышенной устойчивостью. Внешние уровни устойчивы, когда обладают восемью электронами. У инертных газов (элементов VIII группы) внешний уровень завершен. Поэтому они практически не вступают в химические реакции. Атомы других элементов стремятся присоединить или отдать внешние электроны, чтобы оказаться в устойчивом состоянии.

Когда атомы отдают или принимают электроны, они становятся заряженными частицами ионами. Если атом отдает электроны, то становится положительно заряженным ионом - катионом. Если принимает, то отрицательно заряженным - анионом.

У атомов щелочных металлов на внешнем электронном уровне находится только один электрон. Поэтому их проще отдать один, чем принимать 7 других для завершения. При этом они легко его отдают, поэтому считаются активными металлами. В результате катионы щелочных металлов имеют электронное строение схожее с инертными газами в предыдущем периоде.

Атомы элементов металлов имеют на внешнем уровне не более 4 электронов. Поэтому в соединениях они обычно их отдают, превращаясь в катионы.

Атомы неметаллов, особенно галогенов, имеют больше внешних электронов. А для завершения внешнего уровня им недостает меньше. Поэтому им проще присоединить электроны. В результате в соединениях с металлами они чаще являются анионами. Если же соединение образуют два неметалла, то более электроотрицательных оттягивает на себя электроны. У такого атома недостающих электронов меньше, чем у другого.

Кроме стремления к тому, чтобы внешний электронный уровень был устойчивым, в периодах есть другая закономерность. В периодах слева направо, т. е. с увеличением порядкового номера, радиус атомов уменьшается (за исключением первого периода), несмотря на то, что масса возрастает. В результате электроны к ядру притягиваются сильнее, и атом труднее их отдает. Таким образом возрастают неметаллические свойства в периодах.

Однако в подгруппах радиус атомов увеличивается сверху вниз. Как следствие, сверху вниз увеличиваются металлические свойства, атомы легче отдают внешние электроны.

Таким образом, наибольшие металлические свойства наблюдаются у самого нижнего элемента слева (франций Fr), а наибольшие неметаллические - у самого верхнего справа (фтор F, галогены инертны).