20.08.2023

Теорема об изменения количества движения материальной точки. Теорема об изменении количества движения точки


Для материальной точки основной закон динамики можно представить в виде

Умножая обе части этого соотношения слева векторно на радиус-вектор (рис. 3.9), получаем

(3.32)

В правой части этой формулы имеем момент силы относительно точки О. Преобразуем левую часть, применив формулу производной векторного произведения

Но как векторное произведение параллельных векторов. После этого получаем

(3.33)

Первая производная по времени момента количества движения точки относительно какого-либо центра равна моменту силы относительно того же центра.


Пример вычисления кинетического момента системы. Вычислить кинетический момент относительно точки О системы, состоящей из цилиндрического вала массой М = 20 кг и радиусом R = 0.5м и спускающегося груза массой m = 60 кг (рисунок 3.12). Вал вращается вокруг оси Oz с угловой скоростью ω = 10 с -1 .

Рисунок 3.12

; ;

При заданных входных данных кинетический момент системы

Теорема об изменении кинетического момента системы. К каждой точке системы приложим равнодействующие внешних и внутренних сил. Для каждой точке системы можно применить теорему об изменении момента количества движения, например в форме (3.33)

Суммируя по всем точкам системы и учитывая, что сумма производных равна производной от суммы, получим

По определению кинетического момента системы и свойству внешних и внутренних сил

поэтому полученное соотношение можно представить в виде

Первая производная по времени кинетического момента системы относительно какой-либо точки равна главному моменту внешних сил, действующих на систему, относительно той же точки.

3.3.5. Работа силы

1) Элементарная работа силы равна скалярному произведению силы на дифференциал радиус вектора точки приложения силы (рис. 3.13)

Рисунок 3.13

Выражение (3.36) можно записать также в следующих эквивалентных формах

где - проекция силы на направление скорости точки приложения силы.

2) Работа силы на конечном перемещении

Интегрируя элементарную работу силы, получим следующие выражения для работы силы на конечном перемещении из точки А в точку В

3) Работа постоянной силы

Если сила постоянна, то из (3.38) следует

Работа постоянной силы не зависит от формы траектории, а зависит только от вектора перемещения точки приложения силы .

4) Работа силы веса

Для силы веса (рис. 3.14) и из (3.39) получим

Рисунок 3.14

Если движение происходит из точки В в точку А, то

В общем случае

Знак «+» соответствует движению точки приложения силы «вниз», знак «-» - вверх.

4) Работа силы упругости

Пусть ось пружины направлена по оси x (рис.3.15), а конец пружины перемещается из точки 1 в точку 2, тогда из (3.38) получим

Если жесткость пружины равна с , то , тогда

А (3.41)

Если конец пружины перемещается из точки 0 в точку 1, то в этом выражении заменяем , , тогда работа силы упругости примет вид

(3.42)

где - удлинение пружины.

Рисунок 3.15

5) Работа силы приложенной к вращающемуся телу. Работа момента.

На рис. 3.16 показано вращающееся тело, к которому приложена произвольная сила . При вращении точка приложения этой силы движется по окружности.

(Фрагменты математической симфонии)

Связь импульса силы с основным уравнением ньютоновской динамики выражает теорема об изменении количества движения материальной точки.

Теорема. Изменение количества движения материальной точки за некоторый промежуток времени равно импульсу силы (), действующей на материальную точку за тот же промежуток времени. Математическое доказательство этой теоремы можно назвать фрагментом математической симфонии. Вот он.

Дифференциал количества движения материальной точки равен элементарному импульсу силы, действующей на материальную точку. Интегрируя выражение (128) дифференциала количества движения материальной точки, имеем

(129)

Теорема доказана и математики считают свою миссию законченной, а у инженеров, судьба которых - свято верить математикам, возникают вопросы при использовании доказанного уравнения (129). Но их прочно блокирует последовательность и красота математических действий (128 и 129), которые завораживают и побуждают назвать их фрагментом математической симфонии. Сколько поколений инженеров соглашались с математиками и трепетали перед таинственностью их математических символов! Но вот нашёлся инженер, несогласный с математиками, и задаёт им вопросы.

Уважаемые математики! Почему ни в одном из Ваших учебников по теоретической механике не рассматривается процесс применения Вашего симфонического результата (129) на практике, например, при описании процесса разгона автомобиля? Левая часть уравнения (129) предельно понятна. Автомобиль начинает разгон со скорости и завершает его, например, на скорости . Вполне естественно, что уравнение (129) становится таким

И сразу возникает первый вопрос: как же из уравнения (130) определить силу , под действием которой автомобиль разогнан до скорости 10м/с? Ответа на этот вопрос нет ни в одном из неисчислимых учебников по теоретической механике. Пойдём дальше. После разгона автомобиль начинает равномерное движение с достигнутой скоростью 10м/с. Какая же сила движет автомобиль????????? У меня ничего не остаётся, как краснеть вместе с математиками. Первый закон ньютоновской динамики утверждает, что при равномерном движении автомобиля на него не действуют никакие силы, а автомобиль, образно говоря, чихает на этот закон, расходует бензин и совершает работу, перемещаясь, например, на расстояние 100 км. А где же сила, совершившая работу по перемещению автомобиля на 100км? Симфоническое математическое уравнение (130) молчит, а жизнь продолжается и требует ответа. Начинаем искать его.

Поскольку автомобиль движется прямолинейно и равномерно, то сила, перемещающая его, постоянна по величине и направлению и уравнение (130) становится таким

(131)

Итак, уравнение (131) в данном случае описывает ускоренное движение тела. Чему же равна сила ? Как выразить её изменение с течением времени? Математики предпочитают обходить этот вопрос и оставляют его инженерам, полагая, что они должны искать ответ на этот вопрос. У инженеров остаётся одна возможность – учесть, что если после завершения ускоренного движения тела, наступает фаза равномерного движения, которое сопровождается под действием постоянной силы представить уравнение (131) для момента перехода от ускоренного к равномерному движению в таком виде

(132)

Стрелка в этом уравнении означает не результат интегрирования этого уравнения, а процесс перехода от его интегрального вида к упрощённому виду. Сила в этом уравнении эквивалентна усреднённой силе, изменившей количество движения тела от нуля до конечного значения . Итак, уважаемые, математики и физики-теоретики, отсутствие Вашей методики определения величины Вашего импульса вынуждает нас упрощать процедуру определения силы , а отсутствие методики определения времени действия этой силы вообще ставит нас в безвыходное положение и мы вынуждены использовать выражение для анализа процесса изменения количества движения тела. В результате получается, чем дольше будет действовать сила , тем больше её импульс . Это явно противоречит давно сложившимся представлениям о том, что импульс силы тем больше, чем меньше время его действия.

Обратим внимание на то, что изменение количества движения материальной точки (импульса силы) при ускоренном её движении происходит под действием ньютоновской силы и сил сопротивления движению, в виде сил, формируемых механическими сопротивлениями, и силой инерции. Но ньютоновская динамика в абсолютном большинстве задач игнорирует силу инерции, а Механодинамика утверждает, что изменение количества движения тела при его ускоренном движении происходит за счёт превышения величины ньютоновской силы над силами сопротивления движению, в том числе и над силой инерции.

При замедленном движении тела, например, автомобиля с выключенной передачей, ньютоновская сила отсутствует, и изменение количества движения автомобиля происходит за счёт превышения сил сопротивления движению над силой инерции, которая движет автомобиль при его замедленном движении .

Как же теперь вернуть результаты отмеченных «симфонических» математических действий (128) в русло причинно-следственных связей? Выход один – найти новое определение понятиям «импульс силы» и «ударная сила». Для этого разделим обе части уравнения (132) на время t. В результате будем иметь

. (133)

Обратим внимание на то, что выражение mV/t - скорость изменения количества движения (mV/t) материальной точки или тела. Если учесть, что V/t – ускорение, то mV/t - сила, изменяющая количество движения тела. Одинаковая размерность слева и с права знака равенства даёт нам право назвать силу F ударной силой и обозначить её символом , а импульс S - ударным импульсом и обозначить его символом . Из этого следует и новое определение ударной силы. Ударная сила , действующая на материальную точку или тело, равна отношению изменения количества движения материальной точки или тела ко времени этого изменения.

Обратим особое внимание на то, что в формировании ударного импульса (134) участвует только ньютоновская сила, которая изменила скорость автомобиля от нулевого значения до максимального - , поэтому уравнение (134) всецело принадлежит ньютоновской динамике. Поскольку величину скорости фиксировать экспериментально значительно легче, чем - ускорения, то формула (134) очень удобна для расчётов.

Из уравнения (134) следует такой необычный результат.

Обратим внимание на то, что согласно новым законам механодинамики генератором импульса силы при ускоренном движении материальной точки или тела является ньютоновская сила . Она формирует ускорение движения точки или тела, при котором автоматически возникает сила инерции, направленная противоположно ньютоновской силе и ударная ньютоновская сила должна преодолевать действие силы инерции, поэтому сила инерции должна быть представлена в балансе сил в левой части уравнения (134). Так как сила инерции равна массе точки или тела, умноженной на замедление , которое она формирует, то уравнение (134) становится таким

(136)

Уважаемые математики! Видите, какой вид приняла математическая модель, описывающая ударный импульс, который ускоряет движение ударяемого тела от нулевой скорости до максимальной V (11). Теперь проверим её работу в определении ударного импульса , который равен ударной силе , выстрелившей 2-й энергоблок СШГ (рис. 120), а Вам оставим Ваше бесполезное уравнение (132). Чтобы не усложнять изложение, мы оставим пока формулу (134) в покое и воспользуемся формулами, дающими усреднённые значения сил. Видите, в какое положение Вы ставите инженера, стремящегося решить конкретную задачу.

Начнём с динамики Ньютона. Эксперты установили, что 2-й энергоблок поднялся на высоту 14м. Поскольку он поднимался в поле силы тяжести, то на высоте h=14м его потенциальная энергия оказалась равной

а средняя кинетическая энергия была равна

Рис. 120. Фото машинного зала до катастрофы

Из равенства кинетической (138) и потенциальной (137) энергий следует средняя скорость подъёма энергоблока (рис. 121, 122)

Рис. 121. Фотон машинного зала после катастрофы

Согласно новым законам механодинамики подъём энергоблока состоял из двух фаз (рис. 123): первая фаза ОА - ускоренный подъём и вторая фаза АВ – замедленный подъём , , .

Время и расстояния их действия, примерно, равны (). Тогда кинематическое уравнение ускоренной фазы подъёма энергоблока запишется так

. (140)

Рис. 122. Вид колодца энергоблока и самого энергоблока после катастрофы

Закон изменения скорости подъёма энергоблока в первой фазе имеет вид

. (141)

Рис. 123. Закономерность изменения скорости V полёта энергоблока

Подставляя время из уравнения (140) в уравнение (141), имеем

. (142)

Время подъёма блока в первой фазе определится из формулы (140)

. (143)

Тогда общее время подъёма энергоблока на высоту 14м будет равно . Масса энергоблока и крышки равна 2580 тонн. Согласно динамике Ньютона сила , поднимавшая энергоблок, равна

Уважаемые математики! Следуем Вашим симфоническим математическим результатам и записываем Вашу формулу (129), следующую из динамики Ньютона, для определения ударного импульса, выстрелившего 2-й энергоблок

и задаём элементарный вопрос: как определить время действия ударного импульса, выстрелившего 2-й энергоблок????????????

Уважаемые!!! Вспомните, сколько мела исписали на учебных досках поколения Ваших коллег, заумно уча студентов, как определять ударный импульс и никто не пояснил, как определять время действия ударного импульса в каждом конкретном случае. Вы скажете время действия ударного импульса равно интервалу времени изменения скорости энергоблока от нуля до, будем считать, максимального значения 16,75 м/с (139). Оно в формуле (143) и равно 0,84 с. Соглашаемся пока с Вами и определяем усреднённую величину ударного импульса

Сразу возникает вопрос: а почему величина ударного импульса (146) меньше ньютоновской силы 50600тонн? Ответа, у Вас, уважаемые математики, нет . Пойдём дальше.

Согласно динамике Ньютона, главная сила, которая сопротивлялась подъёму энергоблока, - сила тяжести . Так как эта сила направлена против движения энергоблока, то она генерирует замедление, которое равно ускорению свободного падения . Тогда сила гравитации, действующая на летящий вверх энергоблок, равна

Других сил, препятствовавших действию ньютоновской силы 50600 тонн (144), динамика Ньютона не учитывает, а механодинамика утверждает, что подъёму энергоблока сопротивлялась и сила инерции, равная

Сразу возникает вопрос: как найти величину замедления движению энергоблока? Динамика Ньютона молчит, а механодинамика отвечает: в момент действия ньютоновской силы, поднимавшей энергоблок, ей сопротивлялись: сила тяжести и сила инерции, поэтому уравнение сил, действовавших на энергоблок в этот момент, записывается так .

Рассмотрим систему, состоящую из материальных точек. Составим для этой системы дифференциальные уравнения движения (13) и сложим их почленно. Тогда получим

Последняя сумма по свойству внутренних сил равна нулю. Кроме того,

Окончательно находим

Уравнение (20) выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил. В проекциях на координатные оси будет:

Найдем другое выражение теоремы. Пусть в момент времени количество движения системы равно а в момент становится равным . Тогда, умножая обе части равенства (20) на и интегрируя, получим

так как интегралы, стоящие справа, дают импульсы внешних сил.

Уравнение (21) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов, действующих на систему внешних сил за тот же промежуток времени.

В проекциях на координатные оси будет:

Укажем на связь между доказанной теоремой и теоремой о движении центра масс. Так как , то, подставляя это значение в равенство (20) и учитывая, что получим , т. е. уравнение (16).

Следовательно, теорема о движении центра масс и теорема об изменении количества движения системы представляют собой, по существу, две разные формы одной и той же теоремы. В тех случаях, когда изучается движение твердого тела (или системы тел), можно в равной мере пользоваться любой из этих форм, причем уравнением (16) обычно пользоваться удобнее. Для непрерывной же среды (жидкость, газ) при решении задач обычно пользуются теоремой об изменении количества движения системы. Важные приложения эта теорема имеет также в теории удара (см. гл. XXXI) и при изучении реактивного движения (см. § 114).

Пусть материальная точка движется под действием силы F . Требуется определить движение этой точки по отношению к подвижной системе Oxyz (см. сложное движение материальной точки), которая движется известным образом по отношению к неподвижной системе O 1 x 1 y 1 z 1 .

Основное уравнение динамики в неподвижной системе

Запишем абсолютное ускорение точки по теореме Кориолиса

где a абс – абсолютное ускорение;

a отн – относительное ускорение;

a пер – переносное ускорение;

a кор – кориолисово ускорение.

Перепишем (25) с учетом (26)

Введем обозначения
- переносная сила инерции,
- кориолисова сила инерции. Тогда уравнение (27) приобретает вид

Основное уравнение динамики для изучения относительного движения (28) записывается как же как и для абсолютного движения, только к действующим на точку силам надо добавить переносную и кориолисову силы инерции.

Общие теоремы динамики материальной точки

При решении многих задач можно пользоваться выполненными заранее заготовками, полученными на основе второго закона Ньютона. Такие методы решения задач объединены в этом разделе.

Теорема об изменении количества движения материальной точки

Введем следующие динамические характеристики:

1. Количество движения материальной точки – векторная величина, равная произведению массы точки на вектор ее скорости


. (29)

2. Импульс силы

Элементарный импульс силы – векторная величина, равная произведению вектора силы на элементарный промежуток времени


(30).

Тогда полный импульс

. (31)

При F =const получим S =Ft .

Полный импульс за конечный промежуток времени можно вычислить только в двух случаях, когда действующая на точку сила постоянная или зависит то времени. В других случаях необходимо выразить силу как функцию времени.

Равенство размерностей импульса (29) и количества движения (30) позволяет установить между ними количественную взаимосвязь.

Рассмотрим движение материальной точки M под действием произвольной силы F по произвольной траектории.

ОУД:
. (32)

Разделяем в (32) переменные и интегрируем

. (33)

В итоге, принимая во внимание (31), получаем

. (34)

Уравнение (34) выражает следующую теорему.

Теорема : Изменение количества движения материальной точки за некоторый промежуток времени равно импульсу силы, действующей на точку, за тот же интервал времени.

При решении задач уравнение (34) необходимо спроектировать на оси координат

Данной теоремой удобно пользоваться, когда среди заданных и неизвестных величин присутствуют масса точки, ее начальная и конечная скорость, силы и время движения.

Теорема об изменении момента количества движения материальной точки

М
омент количества движения материальной точки
относительно центра равен произведению модуля количества движения точки на плечо, т.е. кратчайшее расстояние (перпендикуляр) от центра до линии, совпадающей с вектором скорости

, (36)

. (37)

Взаимосвязь между моментом силы (причиной) и моментом количества движения (следствием) устанавливает следующая теорема.

Пусть точка M заданной массы m движется под действием силы F .

,
,

, (38)

. (39)

Вычислим производную от (39)

. (40)

Объединяя (40) и (38), окончательно получим

. (41)

Уравнение (41) выражает следующую теорему.

Теорема : Производная по времени от вектора момента количества движения материальной точки относительно некоторого центра равна моменту действующей на точку силы относительно того же центра.

При решении задач уравнение (41) необходимо спроектировать на оси координат

В уравнениях (42) моменты количеств движения и силы вычисляются относительно координатных осей.

Из (41) вытекает закон сохранения момента количества движения (закон Кеплера).

Если момент силы, действующей на материальную точку, относительно какого-либо центра равен нулю, то момент количества движения точки относительно этого центра сохраняет свою величину и направление.

Если
, то
.

Теорема и закон сохранения используются в задачах на криволинейное движение, в особенности при действии центральных сил.

Теорема об изменении количества движения точки

Так как масса точки постоянна, а ее ускорение то уравне­ние, выражающее основной закон динамики, можно представить в виде

Уравнение выражает одновременно теорему об изменении количества движения точки в дифференциальной форме: производная по времени от количества движения точки равна геометрической сумме действующих на точку сил.

Проинтегрируем это уравнение. Пусть точка массы m , движущаяся под действием силы (рис.15), имеет в момент t =0 скорость , а в момент t 1 -скорость .

Рис.15

Умножим тогда обе части равенства на и возь­мем от них определенные интегралы. При этом справа, где интегри­рование идет по времени, пределами интегралов будут 0 и t 1 , а слева, где интегрируется скорость, пределами интеграла будут соответствую­щие значения скорости и . Так как интеграл от равен , то в результате получим:

.

Стоящие справа интегралы пред­ставляют собою импульсы действующих сил. Поэтому окончательно будем иметь:

.

Уравнение выражает теорему об изменении коли­чества движения точки в конечном виде: изменение коли­чества движения точки за некоторый промежуток времени равно геометрической сумме импульсов всех действующих на точку сил за тот же промежуток времени (рис. 15).

При решении задач вместо векторного уравнения часто пользуются уравнениями в проекциях.

В случае прямолинейного движения, происходящего вдоль оси Ох теорема выражается первым из этих уравнений.

Пример 9. Найти закон движения материальной точки массы m , движущейся вдоль оси х под действием постоянной по модулю силы F (рис. 16) при начальных условиях: , при .

Рис.16

Решение. Составим дифференциальное уравнение движения точки в проекции на ось х : . Интегрируя это уравнение, находим: . Постоянная определяется из начального условия для скорости и равна . Окончательно

.

Далее, учитывая, что v = dx/ dt , приходим к дифференциальному уравнению: , интегрируя которое получаем

Постоянную определяем из начального условия для координаты точки. Она равна . Следовательно, закон движения точки имеет вид

Пример 10 . Груз веса Р (рис.17) начинает двигаться из состояния покоя вдоль гладкой горизонтальной плоскости под действием силы F = kt . Найти закон движения груза.

Рис.17

Решение. Выберем начало отсчета системы координат О в начальном положении груза и направим ось х в сторону движения (рис. 17). Тогда начальные условия имеют вид: x (t = 0) = 0,v(t = 0) = 0. На груз действуют силы F, P и сила реакции плоскости N . Проекции этих сил на ось х имеют значения F x = F = kt , Р x = 0, N x = 0, поэтому соответствующее уравнение движения можно записать так: . Разделяя переменные в этом дифференциальном уравнении и затем интегрируя, получим: v = g kt 2 /2P + C 1 . Подставляя начальные данные (v (0) = 0), находим, чтоC 1 = 0, и получаем закон изменения скорости .

Последнее выражение, в свою очередь, является дифференциальным уравнением, интегрируя которое найдем закон движения материальной точки: . Входящую сюда постоянную определяем из второго начального условия х (0) = 0. Легко убедиться, что . Окончательно

Пример 11. На груз, находящийся в покое на горизонтальной гладкой плоскости (см. рис. 17) на расстоянии a от начала координат, начинает действовать в положительном направлении осиx сила F = k 2 (P /g )x , где Р – вес груза. Найти закон движения груза.

Решение. Уравнение движения рассматриваемого груза (материальной точки) в проекции на ось х

Начальные условия уравнения (1) имеют вид: x (t = 0) = a , v(t = 0) = 0.

Входящую в уравнение (1) производную по времени от скорости представим так

.

Подставляя это выражение в уравнение (1) и сокращая на (P /g ), получим

Разделяя переменные в последнем уравнении, находим, что . Интегрируя последнее, имеем: . Используя начальные условия , получаем , и, следовательно,

, . (2)

Поскольку сила действует на груз в положительном направлении оси х , то ясно, что в том же направлении он должен и двигаться. Поэтому в решении (2) следует выбрать знак "плюс". Заменяя дальше во втором выражении (2) на , получаем дифференциальное уравнение для определения закона движения груза. Откуда, разделяя переменные, имеем

.

Интегрируя последнее, находим: . После нахождения постоянной окончательно получаем

Пример 12. Шар M массы m (рис.18) падает без начальной скорости под действием силы тяжести. При падении шар испытывает сопротивление , где постоянный коэффициент сопротивления. Найти закон движения шара.

Рис.18

Решение. Введем систему координат с началом в точке местоположения шара при t = 0, направив ось у вертикально вниз (рис. 18). Дифференциальное уравнение движения шара в проекции на ось у имеет тогда вид

Начальные условия для шара записываются так: y (t = 0) = 0, v(t = 0) = 0.

Разделяя переменные в уравнении (1)

и интегрируя, находим: , где . Или после нахождения постоянной

или . (2)

Отсюда следует, что предельная скорость, т.е. скорость при , равна .

Чтобы найти закон движения, заменим в уравнении (2) v на dy/ dt . Тогда, интегрируя полученное уравнение с учетом начального условия, окончательно находим

.

Пример 13. Научно-исследо­ватель­ская подводная лодка шарообразной формы и массы m = = 1.5×10 5 кг начинает погружаться с выключенными двигателями, имея горизонтальную скорость v х 0 = 30 м/с и отрицательную плавучесть Р 1 = 0.01mg , где – векторная сумма архимедовой выталкивающей силы Q и силы тяжести mg , действующих на лодку (рис. 20). Сила сопротивления воды , кг/с . Определить уравнения движения лодки и ее траекторию.