22.11.2023

Теория электролитической диссоциации формулы. Из истории создания и развития теории электролитической диссоциации


Хорошо известно, что растворы могут приобретать некоторые качества, которые не наблюдаются ни у одного из компонентов, взятых в индивидуальном виде. Так, водный раствор NaCl хорошо проводит электрический ток, тогда как ни чистая вода, ни сухая соль электропроводностью не обладают. В этой связи все растворенные вещества принято делить на два типа:

1) вещества, растворы которых обладают электропроводностью, называют электролитами ;

2) вещества, растворы которых не обладают электропро-водностью, называют неэлектролитами .

К неэлектролитам относятся оксиды, газы, большинство органи-ческих соединений (углеводороды, спирты, альдегиды, кетоны и др.).

К электролитам относится большинство неорганических и некоторые органические кислоты, основания и соли.

Появление электропроводности у растворов электролитов объяснил С. Аррениус, который в 1887 г. предложил теорию электролитической диссоциации:

Электролитической диссоциацией называется процесс распада электролита на ионы под действием молекул растворителя.

Главной причиной электролитической диссоциации является процесс сольватации (гидратации) ионов. Вследствие сольватации затрудняется обратный процесс рекомбинации ионов, называемый также ассоциацией или моляризацией .

В этой связи можно сформулировать некоторые положения:

1) диссоциации подвергаются вещества с ионным или близким к ионному типом химической связи;

2) процесс диссоциации сильнее протекает в полярном раство-рителе и слабее (если вообще возможен) в неполярном растворителе;

3) процесс диссоциации идет тем сильнее, чем выше диэлектри-ческая проницаемость растворителя.

В общем виде процесс электролитической диссоциации в воде можно представить следующим образом:

Kt n An m  (x y )H 2 O ⇄ n m+  m n  ,

где Kt m + – положительно заряженный ион (катион );

An n  – отрицательно заряженный ион (анион ).

Величины x и y , отражающие количество молекул воды в гидрат-ных оболочках, варьируются в широких пределах в зависимости от природы и концентрации ионов, температуры, давления и т.д. В этой связи удобнее пользоваться упрощенными уравнениями электроли-тической диссоциации, т.е. без учета гидратации:

NaCl Na +  Cl  ;

CuSO 4 Cu 2+  SO 4 2  ;

K 3 PO 4 3K +  PO 4 3  .

Тем не менее, следует иметь в виду, что при диссоциации кислот в водных растворах образуются не свободные ионы H + , а достаточно устойчивые ионы гидроксония H 3 O + , поэтому уравнение диссоциации кислоты (например, HCl) должно выглядеть так:

HCl  H 2 O H 3 O +  Cl  .

Однако в химической литературе чаще встречается форма записи, отражающая только процесс распада электролита без учета эффекта гидратации. В дальнейшем мы также будем пользоваться упро-щенной терминологией.

Сильные и слабые электролиты

Количественной характеристикой процесса электролитической диссоциации является степень диссоциации.

Степенью диссоциации называется отношение количества электролита, распавшегося на ионы (n ), к общему количеству электролита (n 0 ):

Величина  выражается в долях единицы или в % и зависит от природы электролита, растворителя, температуры, концентрации и состава раствора.

Особую роль играет растворитель: в ряде случаев при переходе от водных растворов к органическим растворителям степень диссоциации электролитов может резко возрасти или уменьшиться. В дальнейшем, при отсутствии специальных указаний, будем считать, что растворителем является вода.

По степени диссоциации электролиты условно разделяют на сильные ( > 30%), средние (3% <  < 30%) и слабые ( < 3%).

К сильным электролитам относят:

1) некоторые неорганические кислоты (HCl, HBr, HI, HNO 3 , H 2 SO 4 , HClO 4 и ряд других);

2) гидроксиды щелочных (Li, Na, K, Rb, Cs) и щелочноземельных (Ca, Sr, Ba) металлов;

3) почти все растворимые соли.

К электролитам средней силы относят Mg(OH) 2 , H 3 PO 4 , HCOOH, H 2 SO 3 , HF и некоторые другие.

Слабыми электролитами считают все карбоновые кислоты (кроме HCOOH) и гидратированные формы алифатических и ароматических аминов. Слабыми электролитами являются также многие неоргани-ческие кислоты (HCN, H 2 S, H 2 CO 3 и др.) и основания (NH 3 ∙H 2 O).

Несмотря на некоторые совпадения, в целом не следует отождествлять растворимость вещества с его степенью диссоциации. Так, уксусная кислота и этиловый спирт неограниченно растворимы в воде, но в то же время первое вещество является слабым электро-литом, а второе  неэлектролит.

Из истории создания и развития теории электролитической диссоциации

На протяжении всей истории развития химических знаний растворы постоянно были предметом изучения. Способность растворов многих веществ проводить электрический ток была открыта М. Фарадеем в начале XIX в. Гипотезы о диссоциации веществ на ионы высказывались К. Гротгусом (1805), А.У. Уильямсоном (1851), Р. Клаузиусом (1857), Г. Гельмгольцем (1 882). Однако все они ограничивались лишь предположением, не давая развернутых доказательств этой идеи. Например, немецкий физик Гельмгольц полагал, что все электролиты в растворах полностью распадаются на ионы. Однако эта гипотеза не объясняла, например, факта увеличения электропроводности растворов по мере их разбавления, как и многих других фактов, обнаруженных в экспериментальных исследованиях.

К 80-м годам XIX в. в науке накопилось много фактов, характеризующих поведение растворов, но не поддающихся объяснению.

Например, не удавалось объяснить, почему реакция нейтрализации между разными кислотами и щелочами в тех случаях, когда на 1 моль щелочи приходится 1 моль кислоты, всегда сопровождается одинаковым тепловым эффектом, равным 57 кДж.

Было установлено также, что растворы замерзают при более низкой температуре, чем чистые растворители. При этом понижение температуры замерзания всегда пропорционально числу частиц растворенного в единице объема вещества. Так, при растворении в 1000 г растворителя 1 моль вещества температура замерзания должна понижаться на 1,86 °С. Однако при определении температуры замерзания электролитов было обнаружено много несоответствий этим расчетно-экспериментальным данным. Например, раствор хлорида натрия, содержащий 1 моль вещества в 1 000 г растворителя, замерзает не при -1,86 °С, а при -3,36 °С.

Подобных фактов было накоплено немало. Требовалось дать им объяснение на основе новой системы теоретических взглядов.

Эту задачу и решил 29-летний шведский исследователь С.А. Аррениус. Многочисленные опыты и наблюдения, проведенные Аррениусом, а также научные результаты, полученные его коллегами (в первую очередь - теория разбавленных растворов Вант-Гоффа), позволили ему сформулировать положения физической теории электролитической диссоциации, согласно которым:

  • вещества делятся на электролиты и неэлектролиты;
  • при растворении в воде электролиты диссоциируют на ионы;
  • образующиеся ионы и молекулы растворителя находятся в состоянии неупорядоченного теплового движения.

Эти положения объясняли многое, например перечисленные выше непонятные факты.

Пример 1. Одинаковое значение теплового эффекта реакций нейтрализации объясняется тем, что сущность всех таких реакций сводится к одному и тому же процессу: связыванию протонов и гидроксид-ионов и образованию молекул воды и, естественно, характеризуется одним и тем же тепловым эффектом:


Пример 2. Понижение точки замерзания растворов электоролитов происходит пропорционально числу частиц, содержащихся в растворе. Так, при диссоциации одного моля хлорида натрия образуются два моля ионов:

Причин диссоциации Аррениус не раскрыл. Теории электролитической диссоциации было суждено пройти путь от полного неприятия большинством ученых до полного признания. Д.И. Менделеев принадлежал к категорическим противникам идей Аррениуса и отстаивал идею образования соединений из молекул растворенного вещества и растворителя, т. е. предполагал, что растворы имеют химическую природу. Химическая, или гидратная, теория растворов противопоставлялась теории Аррениуса (физической). В дальнейшем синтез идей этих двух теорий привел к созданию современной теории растворов. Огромная роль в создании гидратной теории принадлежит представлениям о химической сущности процесса растворения, обоснованным русскими учеными Д.П. Коноваловым, И.А. Каблуковым и В.А. Кистяковским.

Для объяснения особенностей водных растворов электролитов шведским химиком С. Аррениусом в 1887 г. была предложена теория электролитической диссоциации. Основные положения теории следующие:

1. Электролиты при растворении в воде распадаются на ионы – положительные и отрицательные. Ионы находятся в более устойчивых электронных состояниях, чем атомы. Среди таких ионов встречаются простые, например, Na + , Mg 2+ , Al 3+ и сложные, состоящие из нескольких атомов, например, NO 3 - , SO 4 2- , PO 4 3- . В растворе ионы беспорядочно передвигаются в различных направлениях.

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные – к аноду. Первые называются катионами, а вторые анионами.

3. Диссоциация – обратимый процесс. Одновременно с распадом молекул на ионы протекает обратный процесс – соединения ионов в молекулу.

Поэтому в уравнениях электролитической диссоциации стоит не знак равенства, а знак обратимости ↔. Например, уравнение диссоциации молекулы электролита КА на катион К + и анион А - записывается в виде

КА К + + А - (1).

Теория электролитической диссоциации полностью согласуется с атомно-молекулярным учением и теорией строения атома.

Степень диссоциации электролитов

Под степенью диссоциации электролита понимается отношение числа диссоциированных на ионы молекул n к общему числу молекул растворенного электролита N , то есть

В зависимости от степени диссоциации различают слабые и сильные электролиты. Сильные электролиты при больших концентрациях диссоциированы более чем на 1/2. Степень диссоциации слабых электролитов очень мала по сравнению с 1. Сильные электролиты – это большинство нейтральных солей, сильные кислоты (НСl, HClO 4 , H 2 SO 4), сильные основания (NaOH, KOH). Слабые электролиты – это большинство органических кислот, неорганические слабые кислоты и слабые основания, некоторые нейтральные соли CdCl 2 , Fe(CH 3 COO) 3 . Особенно слабыми электролитами являются вода, сероводород, синильная и борная кислоты.

Между сильными и слабыми электролитами существует переходная группа, которую образуют соли тяжелых металлов, а также некоторые сильные органические кислоты: лимонная, щавелевая, муравьиная.

Степень диссоциации зависит от природы электролита и растворителя, а также от концентрации электролита. С уменьшением концентрации степень диссоциации увеличивается, а при сильном разведении раствора, а →1, и различия между сильно и слабодиссоциирующими электролитами сглаживаются.

Степень диссоциации зависит и от диэлектрической проницаемости растворителя ε. Чем больше диэлектрическая проницаемость, тем сильнее диссоциирует электролит. В воде электролитическая диссоциация может быть сильной, а в ацетоне и в особенности бензоле – слабой. Диэлектрическая проницаемость ε воды, ацетона и бензола соответственно равна 80, 21 и 2,3. Эта закономерность, установленная Нернстом и Томсоном в 1893 г., объясняется тем, что, согласно закону Кулона, сила притяжения между разноименно заряженными ионами обратно пропорциональна диэлектрической проницаемости ε.

Аррениус обратил внимание на тесную связь между способностью растворов солей, кислот и оснований проводить электрический ток и отклонениями растворов этих веществ от законов Вант-Гоффа и Рауля. Он показал, что по электрической проводимости раствора можно рассчитать его осмотическое давление, а следовательно, и поправочный коэффициент L Значения i, вычисленные им из электрической проводимости, хорошо совпали с величинами, найденными для тех же растворов иными методами.

Причиной чрезмерно высокого осмотического давления растворов электролитов является, согласно Аррениусу, диссоциация электролитов на ионы. Вследствие этого, с одной стороны, увеличивается общее число частиц в растворе, а следовательно, возрастают осмотическое давление, понижение давления пара и изменения температур кипения и замерзания, с другой - ионы обусловливают способность раствора проводить электрический ток.

Эти предположения в дальнейшем были развиты в стройную теорию, получившую название теории электролитической диссоциации.

Согласно этой теории, при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называются катионами, к ним относятся, например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами : к ним принадлежат ионы кислотных остатков и гидроксид-ионы. Как и молекулы растворителя, ионы в растворе находятся в состоянии неупорядоченного теплового движения.

Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Например, диссоциация HCl выразится уравнением:

Распад электролитов на ионы объясняет отклонения от законов Вант-Гоффа и Рауля, о которых говорилось в начале этой главы. В качестве примера мы приводили понижение температуры замерзания раствора NaCL Теперь нетрудно понять, почему понижение температуры замерзания этого раствора столь велико. Хлорид натрия переходит в раствор в виде ионов Na + и Cl - . При этом из одного моля NaCl получается не 6,02 IO 23 частиц, а вдвое большее их число. Поэтому и понижение температуры замерзания в растворе NaCl должно быть вдвое больше, чем в растворе неэлектролита той же концентрации.

Точно так же в очень разбавленном растворе хлорида бария, диссоциирующего согласно уравнению

осмотическое давление оказывается в 3 раза больше, чем вычисленное по закону Вант-Гоффа, так как число частиц в растворе в 3 раза больше, чем если бы хлорид бария находился в нем в виде молекул BaCl 2 .

Таким образом, особенности водных растворов электролитов, противоречащие с первого взгляда законам Вант-Гоффа и Рауля, были объяснены на основе этих же законов.

Однако теория Аррениуса не учитывала всей сложности явлений в растворах. В частности, она рассматривала ионы как свободные, независимые от молекул растворителя частицы. Теории Аррениуса противостояла химическая, или гидратная, теория растворов Менделеева, в основе которой лежало представление о взаимодействии растворенного вещества с растворителем. В преодолении кажущегося противоречия обеих теорий большая заслуга принадлежит русскому ученому И.А. Каблукову , впервые высказавшему предположение о гидратации ионов. Развитие этой идеи привело в дальнейшем к объединению теорий Аррениуса и Менделеева.

  • Иван Алексеевич Каблуков (1857-1942) занимался изучением электрическойпроводимости растворов. Его работа «Современные теории растворов (Вант-Гоффаи Аррениуса) в связи с учением о химическом равновесии» оказала большое влияние наразвитие физической химии в России и способствовала углублению теории электролитической диссоциации.

В 1887 году шведским химиком Аррениусом была сформулирована теория электролитической диссоциации. Теория объясняет, почему водные растворы солей, кислот, щелочей проводят электрический ток.

Электролитическая диссоциация

Аррениус, исследуя растворы, заметил, что некоторые из них проводят электрический ток. Чтобы разобраться, как именно это происходит, следует вспомнить определение электрического тока. Это упорядоченное движение заряженных частиц. Следовательно, в растворе должны присутствовать эти частицы.

Заряженными частицами, которые переносят электрический ток, являются ионы. Они делятся на положительно заряженные катионы и отрицательно заряженные анионы.

Рис. 1. Катионы и анионы в воде.

Ионы образуются в результате распада (расщепления) молекул веществ. Это может произойти в растворе под действием молекул воды или при высокой температуре в расплаве. Распад молекул на ионы называется электролитической диссоциацией.

Электролиты и неэлектролиты

Не все вещества распадаются на ионы под воздействием воды. Поэтому выделяют две группы веществ:

  • электролиты - молекулы распадаются на ионы;
  • неэлектролиты - молекулы не распадаются на ионы.

К электролитам относятся сложные неорганические вещества:

  • кислоты;
  • основания;
  • расплавы и растворы солей;
  • твёрдые соли;
  • некоторые твёрдые оксиды;
  • гидроксиды.

Неэлектролиты - большинство органических веществ. К ним относятся:

  • альдегиды;
  • кетоны;
  • углеводороды;
  • углеводы.

Сущностью электролитической диссоциации является распад ковалентных полярных или ионных связей. Молекулы воды оттягивают полярные молекулы, увеличивая полярность, и разрывают их на ионы. В расплавах при высокой температуре ионы в кристаллической решётке начинают совершать колебания, которые приводят к разрушению кристалла. Ковалентные неполярные связи, присутствующие в простых веществах, достаточно прочны и не разрываются молекулами воды или при нагревании.

Рис. 2. Молекулы воды образуют ионы натрия и хлора.

Виды электролитов

Электролитическая диссоциация характеризуется степенью диссоциации. Это величина, отражающая отношение числа распавшихся молекул к общему количеству молекул вещества. Степень диссоциация показывает долю молекул вещества, распавшихся на ионы. Выражается формулой

где n - количество распавшихся молекул, N - общее количество молекул.

По степени диссоциации выделяют две группы электролитов:

  • сильные - распадаются практически полностью в ненасыщенных растворах (сильные кислоты, соли, щёлочи);
  • слабые - распадаются частично или не распадаются (слабые кислоты, малорастворимые соли, нерастворимые основания, гидроксид аммония).

Рис. 3. Сильные и слабые электролиты.

Ненасыщенный раствор содержит небольшую концентрацию растворённого вещества. Это значит, в раствор можно добавить ещё некоторое количество вещества.

Положения теории

Исследовав электролиты, Аррениус сформулировал основные положения теории электролитической диссоциации:

  • вещества при взаимодействии с водой распадаются на ионы - катионы и анионы;
  • электрический ток заставляет двигаться катионы к катоду, а анионы - к аноду;
  • диссоциация - обратимый процесс для слабых электролитов.
Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 192.