01.01.2022

Формула вычисления относительной погрешности. Точные и приближенные числа


Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.

После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность :

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ : , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах. Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.


Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом :

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом : (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели :
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть - надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: .

Общая закономерность таков а - чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение: Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий - это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2 :

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Ответ:

Пример 4:

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Вычислим более точное значение функции с помощью микрокалькулятора:

Абсолютная погрешность:

Относительная погрешность:


Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Пример 5:

Решение: Используем формулу:

В данном случае: , ,


Таким образом :

Ответ:

Пример 7:

Решение: Используем формулу:
В данном случае: , ,

В этой теме буду писать что-то вроде краткой шпаргалки по погрешностям. Опять же, данный текст ни в коей мере не официальный и ссылаться на него недопустимо. Буду признателен за исправление любых ошибок и неточностей, которые могут быть в этом тексте.

Что такое погрешность?

Запись результата эксперимента вида () означает, что если мы проведем очень много идентичных экспериментов, то в 70% полученные результаты будут лежать в интервале , а в 30% - не будут.

Или, что тоже самое, если мы повторим эксперимент, то новый результат ляжет в доверительный интервал с вероятностью, равной доверительной вероятности .

Как округлять погрешность и результат?

Погрешность округляется до первой значащей цифры , если она не единица. Если единица - то до двух. При этом значащей цифрой называется любая цифра результата кроме нулей впереди.

Округляем до или или но ни в коем случае не или , поскольку тут 2 значащие цифры - 2 и 0 после двойки.

Округляем до или

Округляем до или или

Результат округляем таким образом, чтобы последняя значащая цифра результата соответствовала последней значащей цифре погрешности .

Примеры правильной записи :

мм

Мм Держим тут в погрешности 2 значащие цифры потому что первая значащая цифра в погрешности - единица.

мм

Примеры неправильной записи :

Мм. Здесь лишний знак в результате . Правильно будет мм.

мм. Здесь лишний знак и в погрешности, и в результате. Правильно будет мм.

В работе использую значение, данное мне просто в виде цифры. Например, масса грузиков. Какая у нее погрешность?

Если погрешность явно не указана, можно взять единицу в последнем разряде. То есть если написано m=1.35 г, то в качестве погрешность нужно взять 0.01 г.

Есть функция от нескольких величин У каждой из этих величин есть своя погрешность. Чтобы найти погрешность функции надо сделать следующее:

Символ означает частную производную f по x. Подробнее про частные производные .

Положим, вы меряли одну и ту же величину x несколько (n) раз. Получили набор значений.. Вам необходимо посчитать погрешность разброса, посчитать приборную погрешность и сложить их вместе.

По пунктам.

1. Считаем погрешность разброса

Если все значения совпали - никакого разброса у вас нет. Иначе - есть погрешность разброса , которую надо вычислить. Для начала вычисляется среднеквадратичная погрешность среднего:

Здесь означает среднее по всем .
Погрешность разброса получается умножением среднеквадратичной погрешности среднего на коэффициент Стьюдента , который зависит от выбранной вами доверительной вероятности и числа измерений n :

Коэффициенты Стьюдента берем из нижеприведенной таблицы. Доверительная вероятность выбитается произвольно, число измерений n мы также знаем.

2. Считаем приборную погрешность среднего

Если погрешности разных точек разные, то по формуле

При этом естественно, у всех доверительная вероятность должна быть одинаковой.

3. Складываем среднее с разбросом

Погрешности всегда складываются как корень из квадратов:

При этом нужно убедиться, что доверительные вероятности с которыми были вычислены и совпадают.


Как по графику определить приборную погрешность среднего? Ну т.е., используя метод парных точек или метод наименьших квадратов, мы найдем погрешность разброса среднего сопротивления. Как найти приборную погрешность среднего сопротивления?

И в МНК и в методе парных точек можно дать строгий ответ на этот вопрос. Для МНК форума в Светозарове есть ("Основы...", раздел про метод наименьших квадратов), а для парных точек первое, что приходит в голову (в лоб, что называется) это посчитать приборную погрешность каждого углового коэффициента. Ну и далее по всем пунктам...

Если же не хочешь мучиться, то в лабниках дан простой способ для оценки приборной погрешности углового коэффициента, именно из МНК следующий (например перед работой 1 в лабнике "Электроизмерительные приборы. ..." последняя страница Метод.рекомендаций).

Где - величина максимального отклонения по оси Y точки с погрешностью от проведенной прямой, а в знаменателе стоит ширина области нашего графика по оси Y. Аналогично по оси X.


На магазине сопротивлений написан класс точности: 0,05/4*10^-6? Как из этого найти погрешность прибора?

Это означает, что предельная относительная погрешность прибора (в процентах) имеет вид:
, где
- наибольшее значение сопротивления магазина, а - номинальное значение включённого сопротивления.
Легко видеть, что второе слагаемое важно тогда, когда мы работаем на очень малых сопротивлениях.

Подробнее всегда можно посмотреть в паспорте прибора. Паспорт можно найти в интернете, забив марку прибора в гугл.

Литература про погрешности

Гораздо больше информации по этому поводу можно найти в рекомендованной для первокурсников книге:
В.В. Светозаров "Элементарная обработка результатов измерений"

В качестве дополнительной (для первокурсников дополнительной) литературы можно порекомендовать:
В.В.Светозаров "Основы статистической обработки результатов измерений"

И уж тем кто хочет окончательно во всем разобраться непременно стоит заглянуть сюда:
Дж. Тейлор. "Введение в теорию ошибок"

Спасибо "у за нахождение и размещение у себя на сайте этих замечательных книжек.

Истинное значение физической величины определить абсолютно точно практически невозможно, т.к. любая операция измерения связана с рядом ошибок или, иначе, погрешностей. Причины погрешностей могут быть самыми различными. Их возникновение может быть связано с неточностями изготовления и регулировки измерительного прибора, обусловлено физическими особенностями исследуемого объекта (например, при измерении диаметра проволоки неоднородной толщины результат случайным образом зависит от выбора участка измерений), причинами случайного характера и т.д.

Задача экспериментатора заключается в том, чтобы уменьшить их влияние на результат, а также указать, насколько полученный результат близок к истинному.

Существуют понятия абсолютной и относительной погрешности.

Под абсолютной погрешностью измерений будет понимать разницу между результатом измерения и истинным значением измеряемой величины:

∆x i =x i -x и (2)

где ∆x i – абсолютная погрешность i-го измерения, x i _- результат i-го измерения, x и – истинное значение измеряемой величины.

Результат любого физического измерения принято записывать в виде:

где – среднее арифметическое значение измеряемой величины, наиболее близкое к истинному значению (справедливость x и≈ будет показана ниже), - абсолютная ошибка измерений.

Равенство (3) следует понимать таким образом, что истинное значение измеряемой величины лежит в интервале [ - , + ].

Абсолютная погрешность – величина размерная, она имеет ту же размерность, что и измеряемая величина.

Абсолютная погрешность не полностью характеризует точность произведенных измерений. В самом деле, если мы измерим с одной и той же абсолютной ошибкой ± 1 мм отрезки длиной 1 м и 5 мм, точность измерений будут несравнимы. Поэтому, наряду с абсолютной погрешностью измерения вычисляется относительная погрешность.

Относительной погрешностью измерений называется отношение абсолютной погрешности к самой измеряемой величине:

Относительная погрешность – величина безразмерная. Она выражается в процентах:

В приведенном выше примере относительные ошибки равны 0,1% и 20%. Они заметно различаются между собой, хотя абсолютные значения одинаковы. Относительная ошибка дает информацию о точности

Погрешности измерений

По характеру проявления и причинам появления погрешности можно условно разделить на следующие классы: приборные, систематические, случайные, и промахи (грубые ошибки).

П р о м а х и обусловлены либо неисправностью прибора, либо нарушением методики или условий эксперимента, либо имеют субъективный характер. Практически они определяются как результаты резко отличающиеся от других. Для устранения их появления требуется соблюдать аккуратность и тщательность в работе с приборами. Результаты, содержащие промахи, необходимо исключать из рассмотрения (отбрасывать).

Приборные погрешности. Если измерительный прибор исправен и отрегулирован, то на нем можно провести измерения с ограниченной точностью, определяемой типом прибора. Принято приборную погрешность стрелочного прибора считать равной половине наименьшего деления его шкалы. В приборах с цифровым отсчетом приборную ошибку приравнивают к величине одного наименьшего разряда шкалы прибора.

Систематические погрешности - это ошибки, величина и знак которых постоянны для всей серии измерений, проведенных одним и тем же методом и с помощью одних и тех же измерительных приборов.

При проведении измерений важен не только учет систематических ошибок, но необходимо также добиваться их исключения.

Систематические погрешности условно разделяются на четыре группы:

1) погрешности, природа которых известна и их величина может быть достаточно точно определена. Такой ошибкой является, например, изменение измеряемой массы в воздухе, которая зависит от температуры, влажности, давления воздуха и т.д.;

2) погрешности, природа которых известна, но неизвестна сама величина погрешности. К таким погрешностям относятся ошибки, обусловленные измерительным прибором: неисправность самого прибора, несоответствие шкалы нулевому значению, классу точности данного прибора;

3) погрешности, о существовании которых можно не подозревать, но величина их зачастую может быть значительной. Такие ошибки возникают чаще всего при сложных измерениях. Простым примером такой ошибки является измерение плотности некоторого образца, содержащего внутри полости;

4) погрешности, обусловленные особенностями самого объекта измерения. Например, при измерении электропроводности металла из последнего берут отрезок проволоки. Погрешности могут возникнуть, если имеется какой-либо дефект в материале - трещина, утолщение проволоки или неоднородность, меняющие его сопротивление.

Случайные погрешности - это ошибки, которые изменяются случайным образом по знаку и величине при идентичных условиях повторных измерений одной и той же величины.


Похожая информация.


Ни одно измерение не свободно от погрешностей, или, точнее, вероятность измерения без погрешностей приближается к нулю. Род и причины погрешностей весьма разнообразны и на них влияют многие факторы (рис.1.2).

Общая характеристика влияющих факторов может быть систематизирована с различных точек зрения, например, по влиянию перечисленных факторов (рис.1.2).

По результатам измерения погрешности можно разделить на три вида: систематические, случайные и промахи.

Систематические погрешности, в свою очередь, делят на группы по причине их возникновения и характеру проявления. Они могут быть устранены различными способами, например, введением поправок.

рис. 1.2

Случайные погрешности вызываются сложной совокупностью изменяющихся факторов, обычно неизвестных и трудно поддающихся анализу. Их влияние на результат измерения можно уменьшить, например, путем многократных измерений с дальнейшей статистической обработкой полученных результатов методом теории вероятностей.

К промахам относятся грубые погрешности, которые возникают при внезапных изменениях условия эксперимента. Эти погрешности по своей природе тоже случайны, и после выявления должны быть исключены.

Точность измерений оценивается погрешностями измерений, которые подразделяются по природе возникновения на инструментальную и методическую и по методу вычислений на абсолютную, относительную и приведенную.

Инструментальная погрешность характеризуется классом точности измерительного прибора, который приведен в его паспорте в виде нормируемых основной и дополнительных погрешностей.

Методическая погрешность обусловлена несовершенством методов и средств измерений.

Абсолютная погрешность есть разность между измеренным G u и истинным G значениями величины, определяемая по формуле:

Δ=ΔG=G u -G

Заметим, что величина имеет размерность измеряемой величины.

Относительную погрешность находят из равенства

δ=±ΔG/G u ·100%

Приведенную погрешность рассчитывают по формуле (класс точности измерительного прибора)

δ=±ΔG/G норм ·100%

где G норм – нормирующее значение измеряемой величины. Ее принимают равной:

а) конечному значению шкалы прибора, если нулевая отметка находится на краю или вне шкалы;

б) сумме конечных значений шкалы без учета знаков, если нулевая отметка расположена внутри шкалы;

в) длине шкалы, если шкала неравномерная.

Класс точности прибора устанавливается при его проверке и является нормируемой погрешностью, вычисляемой по формулам

γ=±ΔG/G норм ·100%, если ΔG m =const

где ΔG m – наибольшая возможная абсолютная погрешность прибора;

G k – конечное значение предела измерения прибора; с и d – коэффициенты, учитывающие конструктивные параметры и свойства измерительного механизма прибора.

Например, для вольтметра с постоянной относительной погрешностью имеет место равенство

δ m =±c

Относительная и приведенная погрешности связаны следующими зависимостями:

а) для любого значения приведенной погрешности

δ=±γ·G норм /G u

б) для наибольшей приведенной погрешности

δ=±γ m ·G норм /G u

Из этих соотношений следует, что при измерениях, например вольтметром, в цепи при одном и том же значении напряжения относительная погрешность тем больше, чем меньше измеряемое напряжение. И если этот вольтметр выбран неправильно, то относительная погрешность может быть соизмерима со значением G н , что является недопустимым. Заметим, что в соответствии с терминологией решаемых задач, например, при измерении напряжения G = U , при измерении тока C = I , буквенные обозначения в формулах для вычисления погрешностей необходимо заменять на соответствующие символы.

Пример 1.1. Вольтметром, имеющим значения γ m = 1,0 % , U н = G норм, G k = 450 В , измеряют напряжение U u , равное 10 В. Оценим погрешности измерений.

Решение.

Ответ. Погрешность измерений составляет 45 %. При такой погрешности измеренное напряжение нельзя считать достоверным.

При ограниченных возможностях выбора прибора (вольтметра), методическая погрешность может быть учтена поправкой, вычисленной по формуле

Пример 1.2. Вычислить абсолютную погрешность вольтметра В7-26 при измерениях напряжения в цепи постоянного тока. Класс точности вольтметра задан максимально приведенной погрешностью γ m =±2,5 % . Используемый в работе предел шкалы вольтметра U норм =30 В.

Решение. Абсолютная погрешность вычисляется по известным формулам:

(так как приведенная погрешность, по определению, выражается формулой , то отсюда можно найти и абсолютную погрешность:

Ответ. ΔU = ±0,75 В .

Важными этапами в процессе измерений являются обработка результатов и правила округления. Теория приближенных вычислений позволяет, зная степень точности данных, оценить степень точности результатов еще до выполнения действий: отобрать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата, но не слишком большую, чтобы избавить вычислителя от бесполезных расчетов; рационализировать сам процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точные цифры результаты.

При обработке результатов применяют правила округления.

  • Правило 1. Если первая из отбрасываемых цифр больше пяти, то последняя из сохраняемых цифр увеличивается на единицу.
  • Правило 2. Если первая из отбрасываемых цифр меньше пяти, то увеличение не делается.
  • Правило 3. Если отбрасываемая цифра равняется пяти, а за ней нет значащих цифр, то округление производится на ближайшее четное число, т.е. последняя сохраняемая цифра остается неизменной, если она четная, и увеличивается, если она не четная.

Если за цифрой пять есть значащие цифры, то округление производится по правилу 2.

Применяя правило 3 к округлению одного числа, мы не увеличиваем точность округления. Но при многочисленных округлениях избыточные числа будут встречаться примерно столь же часто, как недостаточно. Взаимная компенсация погрешности обеспечит наибольшую точность результата.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью.

Величина предельной погрешности не является вполне определенной. Для каждого приближенного числа должна быть известна его предельная погрешность (абсолютная или относительная).

Когда она прямо не указана, то подразумевается, что предельная абсолютная погрешность составляет половину единицы последнего выписанного разряда. Так, если приведено приближенное число 4,78 без указания предельной погрешности, то подразумевается, что предельная абсолютная погрешность составляет 0,005. Вследствие этого соглашения всегда можно обойтись без указания предельной погрешности числа, округленного по правилам 1-3, т.е., если приближенное число обозначить буквой α , то

Где Δn – предельная абсолютная погрешность; а δ n – предельная относительная погрешность.

Кроме того, при обработке результатов используются правила нахождения погрешности суммы, разности, произведения и частного.

  • Правило 1. Предельная абсолютная погрешность суммы равна сумме предельных абсолютных погрешностей отдельных слагаемых, но при значительном числе погрешностей слагаемых обычно происходит взаимная компенсация погрешностей, поэтому истинная погрешность суммы лишь в исключительных случаях совпадает с предельной погрешностью или близка к ней.
  • Правило 2. Предельная абсолютная погрешность разности равна сумме предельных абсолютных погрешностей уменьшаемого или вычитаемого.

Предельную относительную погрешность легко найти, вычислив предельную абсолютную погрешность.

  • Правило 3. Предельная относительная погрешность суммы (но не разности) лежит между наименьшей и наибольшей из относительных погрешностей слагаемых.

Если все слагаемые имеют одну и ту же предельную относительную погрешность, то и сумма имеет ту же предельную относительную погрешность. Иными словами, в этом случае точность суммы (в процентном выражении) не уступает точности слагаемых.

В противоположность сумме разность приближенных чисел может быть менее точной, чем уменьшаемое и вычитаемое. Потеря точности особенно велика в том случае, когда уменьшаемое и вычитаемое мало отличаются друг от друга.

  • Правило 4. Предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей: δ=δ 1 +δ 2 , или, точнее, δ=δ 1 +δ 2 +δ 1 δ 2 где δ – относительная погрешность произведения, δ 1 δ 2 - относительные погрешности сомножителей.

Примечания :

1. Если перемножаются приближенные числа с одним и тем же количеством значащих цифр, то в произведении следует сохранить столько же значащих цифр. Последняя из сохраняемых цифр будет не вполне надежна.

2. Если некоторые сомножители имеют больше значащих цифр, чем другие, то до умножения следует первые округлить, сохранив в них столько цифр, сколько имеет наименее точный сомножитель или еще одну (в качестве запасной), дальнейшие цифры сохранять бесполезно.

3. Если требуется, чтобы произведение двух чисел имело заранее данное число вполне надежное, то в каждом из сомножителей число точных цифр (полученное измерением или вычислением) должно быть на единицу больше. Если количество сомножителей больше двух и меньше десяти, то в каждом из сомножителей число точных цифр для полной гарантии должно быть на две единицы больше, чем требуемое число точных цифр. Практически же вполне достаточно взять лишь одну лишнюю цифру.

  • Правило 5. Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя. Точная величина предельной относительной погрешности всегда превышает приближенную. Процент превышения примерно равен предельно относительной погрешности делителя.

Пример 1.3. Найти предельную абсолютную погрешность частного 2,81: 0,571.

Решение. Предельная относительная погрешность делимого есть 0,005:2,81=0,2%; делителя – 0,005:0,571=0,1%; частного – 0,2% + 0,1%=0,3%. Предельная абсолютная погрешность частного приближенно составит 2,81:0,571·0,0030=0,015

Значит, в частном 2,81:0,571=4,92 уже третья значащая цифра не надежна.

Ответ. 0,015.

Пример 1.4. Вычислить относительную погрешность показаний вольтметра, включенного по схеме (рис. 1.3), которая получается, если предположить, что вольтметр имеет бесконечно большое сопротивление и не вносит искажений в измеряемую цепь. Классифицировать погрешность измерения для этой задачи.

рис. 1.3

Решение. Обозначим показания реального вольтметра через И, а вольтметра с бесконечно большим сопротивлениемчерез И ∞ . Искомая относительная погрешность

Заметим, что

тогда получим

Так как R И >>R и R > r, то дробь в знаменателе последнего равенства много меньше единицы. Поэтому можно воспользоваться приближенной формулой , справедливой при λ≤1 для любого α . Предположив, что в этой формуле α = -1 и λ= rR (r+R) -1 R И -1 , получим δ ≈ rR/(r+R) R И .

Чем больше сопротивление вольтметра по сравнению с внешним сопротивлением цепи, тем меньше погрешность. Но условие R<

Ответ. Погрешность систематическая методическая.

Пример 1.5. В цепь постоянного тока (рис.1.4) включены приборы: А – амперметр типа М 330 класса точности К А = 1,5 с пределом измерения I k = 20 А; А 1 – амперметр типа М 366 класса точности К А1 = 1,0 с пределом измерения I к1 = 7,5 А. Найти наибольшую возможную относительную погрешность измерения тока I 2 и возможные пределы его действительного значения, если приборы показали, что I=8,0А. и I 1 = 6,0А. Классифицировать измерение.

рис. 1.4

Решение. Определяем ток I 2 по показаниям прибора (без учета их погрешностей): I 2 =I-I 1 =8,0-6,0=2,0 А.

Найдем модули абсолютных погрешностей амперметров А и А 1

Для А имеем равенство для амперметра

Найдем сумму модулей абсолютных погрешностей:

Следовательно, наибольшая возможная и той же величины, выраженная в долях этой величины, равна 1 . 10 3 – для одного прибора; 2·10 3 – для другого прибора. Какой из этих приборов будет наиболее точным?

Решение. Точность прибора характеризуется значением, обратным погрешности (чем точнее прибор, тем меньше погрешность), т.е. для первого прибора это составит 1/(1 . 10 3) = 1000, для второго – 1/(2 . 10 3) = 500. Заметим, что 1000 > 500. Следовательно, первый прибор точнее второго в два раза.

К аналогичному выводу можно прийти, проверив соответствие погрешностей: 2 . 10 3 / 1 . 10 3 = 2.

Ответ. Первый прибор в два раза точнее второго.

Пример 1.6. Найти сумму приближенных замеров прибора. Найти количество верных знаков: 0,0909 + 0,0833 + 0,0769 + 0.0714 + 0,0667 + 0.0625 + 0,0588+ 0,0556 + 0,0526.

Решение. Сложив все результаты замеров, получим 0,6187. Предельная наибольшая погрешность суммы 0,00005·9=0,00045. Значит, в последнем четвертом знаке суммы возможна ошибка до 5 единиц. Поэтому округляем сумму до третьего знака, т.е. тысячных, получаем 0,619 – результат, в котором все знаки верные.

Ответ. 0,619. Количество верных знаков – три знака после запятой.

Оценка погрешностей результатов измерений

Погрешности измерений и их типы

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т. д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т. е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от https://pandia.ru/text/77/496/images/image002_131.gif" width="85" height="23 src=">с..gif" width="16" height="17 src="> и X – соответственно истинное и измеренное значения исследуемой величины. Величина называется абсолютной погрешностью (ошибкой) измерения, а выражение , характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т. д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т. д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т. п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2. Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙103 кг/м3, то абсолютная погрешность в этом случае равна https://pandia.ru/text/77/496/images/image009_52.gif" width="123" height="24 src=">используется формула

, (1)

где https://pandia.ru/text/77/496/images/image012_40.gif" width="16" height="24">, - частные производные функции по переменной https://pandia.ru/text/77/496/images/image014_34.gif" width="65 height=44" height="44">.

Частные производные по переменным d и h будут равны

Https://pandia.ru/text/77/496/images/image017_27.gif" width="71" height="44 src=">.

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с имеет следующий вид

,

где и приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

https://pandia.ru/text/77/496/images/image016_30.gif" width="12 height=23" height="23">.gif" width="45" height="21 src="> - функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки , σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где https://pandia.ru/text/77/496/images/image027_14.gif" width="15" height="17">- среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше https://pandia.ru/text/77/496/images/image027_14.gif" width="15" height="17 src=">, а случайная абсолютная погрешность , то результат измерений запишется в виде https://pandia.ru/text/77/496/images/image029_11.gif" width="45" height="19"> до , в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку https://pandia.ru/text/77/496/images/image025_16.gif" width="19 height=24" height="24"> близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ , используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

Распределение вероятностей этой величины не зависит от σ2, а существенно зависит от числа опытов n. С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

Таблица 1.

Пользуясь данными таблицы, можно:

1) определить доверительный интервал, задаваясь определенной вероятностью;

2) выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Х будем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений

При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

Проводятся измерения заданного физического параметра n раз в одинаковых условиях, и результаты записываются в таблицу. Если результаты некоторых измерений резко отличаются по своему значению от остальных измерений, то они как промахи отбрасываются, если после проверки не подтверждаются. Вычисляется среднее арифметическое из n одинаковых измерений. Оно принимается за наиболее вероятное значение измеряемой величины

Находятся абсолютные погрешности отдельных измерений Вычисляются квадраты абсолютных погрешностей отдельных измерений (Δх i)2 Определяется средняя квадратичная ошибка среднего арифметического

.

Задается значение доверительной вероятности α. В лабораториях практикума принято задавать α=0,95. Находится коэффициент Стьюдента для заданной доверительной вероятности α и числа произведенных измерений (см. табл.) Определяется случайная погрешность

Определяется суммарная погрешность

Оценивается относительная погрешность результата измерений

.

Записывается окончательный результат в виде

С α=… Е=…%.

5. Погрешность косвенных измерений

При оценке истинного значения косвенно измеряемой величины https://pandia.ru/text/77/496/images/image045_6.gif" width="75" height="24">, можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется , а затем определяется среднее арифметическое из всех значений yi

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений..gif" width="75" height="24">. В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y. Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

. (10)

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y. Задание доверительной вероятности α, нахождение коэффициента Стьюдента https://pandia.ru/text/77/496/images/image048_2.gif" width="83" height="23">, с α=… Е=…%.

6. Пример оформления лабораторной работы

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

где d – диаметр цилиндра; h – высота.

Результаты измерений

Таблица 2.

№ измерения

5.4. Вычисление суммарной погрешности

Абсолютная погрешность

; .

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

6. Графическое представление результатов измерений

Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование , интегрирование, решение уравнения и др.

Графики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т. е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).