21.10.2023

Что исследует наука цитология. Представление о том, что организмы состоят из клеток


Клеточная биология (биология клетки, цитология) - наука о клетке.

Клеточная биология — раздел биологии, предметом которого является клетка, элементарная единица живого. Клетка рассматривается как система, включающая в себя отдельные клеточные структуры, их участие в общеклеточных физиологических процессах, пути регуляции этих процессов. Рассматривается воспроизведение клеток и их компонентов, приспособление клеток к условиям среды, реакции на действие различных факторов, патологические изменения клеток. и механизмы их гибели.

Цитология и клеточная биология

Термин «Клеточная биология» или «Биология клетки» во второй половине XX века вытеснил исходный первоначальный термин «Цитология», который определял науку о клетке. Цитология принадлежит к ряду «счастливых» биологических дисциплин, таких как биохимия , биофизика , и генетика , развитие которых за последние 60 лет было особенно бурным («биологическая революция») и произвело в биологии кардинальные изменения в понимании организации и сути жизненных явлений. Классическая цитология, которая в начале была, главным образом. описательной морфологической наукой, впитав в себя идеи, факты и методы биохимии, биофизики и молекулярной биологии, стала общебиологической дисциплиной, изучающей не только строение, морфологию, но и функциональные и молекулярные аспекты поведения клеток, как элементарных единиц живой природы.

Хотя первые описания и представления о клетке появились более 300 лет тому назад, детальное изучение клеток было связано с развитием микроскопии в XIX веке. В это время были сделаны главные описания внутриклеточной организации и была сформулирована т.н. клеточная теория (Т. Шванн . Р. Вирхов), главными постулатами которой являются: клетка - элементарная единица живого; вне клетки нет жизни (по Р. Вирхову «жизнь есть деятельность клетки, особенности первой есть особенности и последней»); клетки сходны (гомологичны) по своему строению и по своим основным свойствам; клетки увеличиваются в числе, размножаются только путем деления исходных клеток. Клеточная теория не только оказала значительное влияние на развитие таких общебиологических дисциплин, как гистология , эмбриология и физиология, но и произвела настоящий переворот в медицине, показав, что в основе любых заболеваний организма лежит клеточная патология, т.е. изменение функционирования отдельных групп клеток в составе органов и тканей.

Большую роль в становлении и развитии отечественной биологии и в дальнейшем - клеточной биологии сыграли научные школы таких исследователей, как И.И. Мечников , Н.К. Кольцов , Д.Н. Насонов и другие.

К концу XIX века были описаны многие внутриклеточные компоненты (ядро, хромосомы , митохондрии и др.), был охарактеризован митоз как единственный способ размножения клеток, была создана хромосомная теория наследственности (цитогенетика). В это же время и в начале XX века интересы цитологии были направлены на выяснение функционального значения внутриклеточных компонентов (цитофизиология). Решению этих задач помогло развитие таких направлений как цитохимия, культивирование клеток, связанных с внедрением новых методических приемов (флуоресцентная микроскопия, количественная цитохимия, авторадиография, дифференциальное центрифугирование и др.).

Качественным переломом в анализе клеточных компонентов и их функционального значения было внедрение в 50-ых годах XX века электронной микроскопии, что позволило исследовать клетки на субмикроскопическом уровне. Совокупность электронно-микроскопических и молекулярно-биологических методов дала возможность тесно связать изучение морфологии компонентов клеток с выявлением их биохимических особенностей и установить их функциональное значение. Именно в середине XX века стал употребляться термин «клеточная биология» как определение науки, которая изучает не только строение клеток, но и функционально-биохимические характеристики их структур и отдельных этапов жизни клеток вообще. В это же время был открыт клеточный цикл (молекулярная последовательность событий при размножении клеток), его регуляция на молекулярном уровне, дана функционально-биохимическая характеристика многих старых и вновь обнаруженных внутриклеточных структур.

Учение о клетке

В настоящее время с позиций современной молекулярной биологии можно сделать следующее определение, что такое клетка: клетка - это ограниченная активной липопротеидной мембраной упорядоченная система биополимеров (белков, нуклеиновых кислот, липидов) и их макромолекулярных комплексов, участвующих в единой совокупности метаболических (обменных) и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Внутриклеточные структурные элементы представляют собой функциональные подсистемы, или системы второго порядка. Так, клеточное ядро является системой хранения, воспроизведения и реализации генетической информации, заключенной в ДНК хромосом; гиалоплазма (основная плазма) - система основного промежуточного обмена и синтеза мономеров, а также синтеза белков на рибосомах; цитоскелет - опорно-двигательная система клетки; вакуолярная система - система синтеза, модификации и транспорта некоторых белковых полимеров и образования многих клеточных липопротеидных мембран; митохондрии - органеллы энергообеспечения всех функций клетки за счет синтеза АТФ; пластиды растительных клеток - система фотосинтеза АТФ и синтеза углеводов; плазматическая мембрана - барьерно-рецепторно-транспортная система клетки.

Важно подчеркнуть, что все эти подсистемы клетки образуют некое сопряженное единство, находящееся во взаимной зависимости. Так, нарушение функции ядра сразу сказывается на синтезе белков, нарушение структуры и функции митохондрий прекращает все синтетические и обменные процессы, нарушение элементов цитоскелета останавливает внутриклеточный транспорт и т.д.

Современная биохимия и молекулярная биология, изучающие химические процессы, лежащие в основе жизнедеятельности клеток, не могут обходиться без информации о структурах, на которых эти процессы происходят; так же как и в клеточной биологии при изучении структур и их функционального значения невозможно обходиться без знания молекулярных процессов, происходящих на этих структурах. Поэтому все чаще в названиях различных руководств и учебников применяется термин «молекулярная биология клетки».

Изучение биологии клетки имеет огромное практическое значение: это изучение физиологии организмов, использование клеток в биотехнологических разработках, использование данных клеточной биологии в практической медицине. Так, например, сведения из области клеточной биологии необходимы при изучении злокачественного роста клеток, для цитодиагностики заболевания, для применения стволовых клеток и т.д. Более того, любые заболевания человека нельзя понять без привлечения данных из клеточной биологии.

Выдающиеся отечественные ученые-цитологи

И.И.Мечников (1845-1916) - знаменитый русский биолог и патолог, один из основоположников экспериментальной цитологии и иммунологии, создатель научной школы, почетный член Петербургской АН, один из основателей Пастеровского института в Париже. В 1883 году И.И.Мечников открыл явление фагоцитоза, выдвинул фагоцитарную теорию иммунитета (1901); за работы по изучению иммунитета совместно с П.Эрлихом был удостоен Нобелевской премии в 1908 году.

Огромное влияние на развитие биологии, генетики и цитологии в нашей стране оказала научная школа Н.К.Кольцова (1872-1940). Это был исследователь, идеи которого на десятилетия опередили многие открытия, ставшие основами современных представлений в генетике и биологии клетки. Н.К.Кольцовым в 1903 году была обнаружена внутренняя фибриллярная система, которая была им определена как скелетная цитоплазматическая структура, определяющая форму и движение клеток. В настоящее время эта система получила название цитоскелет, в его состав входят белковые полимеры, из которых образуются микротрубочки и нитчатые структуры (микрофиламенты, промежуточные филаменты). Другим важнейшим достижением Н.К.Кольцова было предвидение матричного принципа удвоения наследственных структур. По его представлениям, малые молекулы ядра собираются на уже существующем шаблоне, а затем «сливаются» в полимерную молекулу, в копию шаблона. В то время (1927) еще не было известно о макромолекулах ДНК, но идея о том, что постоянная консервативная наследственная матрица не уничтожается и не возникает заново, но переходит от родителей к потомкам, было великим предсказанием. Можно считать, что это утверждение Н.К.Кольцова и явилось началом развития молекулярной биологии. Многолетние исследования о форме и поведении клеток (цитоскелет) и матричная гипотеза - величайшая заслуга Н.К.Кольцова как «пророка в своем отечестве» в развитии биологии. Огромная заслуга Н.К.Кольцова, кроме того, состоит в том, что он воспитал целую плеяду своих учеников-последователей: генетиков, физиологов, эмбриологов и цитологов. К ним относятся В.В. Сахаров, Б.Л.Астауров, С.С. Четвериков , Д.П. , А.С. Серебровский, Г.И. Роскин и другие. Теперь принято говорить о биологической российской школе Н.К.Кольцова. Его имя теперь носит институт биологии развития РАН.

Большую роль в создании отечественной цитологии сыграл Д.Н. Насонов (1895-1957). Работы Дмитрия Николаевича, посвященные изучению аппарата Гольджи, были высоко оценены специалистами и стали классическими. При изучении работы аппарата Гольджи Д.Н. Насонов выдвинул гипотезу о ведущей роли этого органоида в клеточном секреторном процессе. Намного позднее с помощью электронномикроскопической авторадиографии эта гипотеза получила полное подтверждение (Леблон, 1966) и стала аксиомой функционального значения этой структуры. В 1956 году по инициативе Дмитрия Николаевича был организован Институт цитологии АН СССР.

Одним из учеников Н.К.Кольцова был Г.И.Роскин (1882-1964), работавший с ним с 1912 года. Он исследовал скелетные и сократимые структуры в различных клетках, начиная с одноклеточных и кончая гладкими и поперечно-полосатыми мышцами многоклеточных организмов. Им было сделано заключение, что сократимые и опорные элементы образуют весьма сложные системы, обеспечивающие двигательные и опорные функции - эти системы были названы статокинетическими. Этот цикл работ является продолжением исследований цитоскелета, начатых Н.К.Кольцовым.

С 1930 по 1964 г. Г.И.Роскин заведовал кафедрой гистологии при Московском государственном университете. Продолжая изучать сократимые элементы клетки, Г.И. Роскин уделял большое внимание изучению цитологии раковых клеток, что привело к открытию противоракового препарата круцина, некоторое время использовавшегося в клинике. Особое внимание Г.И. Роскин уделял внедрению в гистологию и цитологию методов цитохимии, позволяющих локализовать в клетках те или иные полимеры или отдельные аминокислоты. В это время кафедра гистологии стала пропагандистом цитохимических методов, которые нашли широкое применение не только в биологических исследованиях, но и в медицине. Позднее В.Я. Бродский, ученик Г.И. Роскина, стал развивать количественные гистохимические исследования, используя специальную цитофотометрическую аппаратуру. Это привело к появлению новых биохимических и биофизических методов, которые широко используются в клеточной биологии.

Большой вклад в изучение строения и поведения опухолевых клеток внесен работами Ю.М. Васильева (р.1928) и его учеников. В течение многих лет его школа изучает механизмы движения нормальных и опухолевых клеток. Им впервые выявлена роль системы микротрубочек и других элементов цитоскелета в определении направления миграции как нормальных, так и опухолевых клеток. Он руководит лабораторией механизмов канцерогенеза Онкологического научного центра РАМН.

Ю.С. Ченцов (1930г.р.) заведовал кафедрой клеточной биологии и гистологии с 1970 по 2010. Он является одним из основателей московской школы электронных микроскопистов. Им и его учениками впервые создана трехмерная реконструкция центриоли и описано ее поведение в клеточном цикле. Ю.С.Ченцов - один из авторов открытия ядерного белкового остова (матрикса), он показал, что ядерный матрикс представляет собой неотъемлемую часть интерфазных и митотических хромосом. Ю.С.Ченцов сыграл большую роль в изучении ультраструктуры клеточного ядра и митотической хромосомы. В работах по изучению митохондрий в мышечной ткани, Ю.С.Ченцов стал одним из авторов открытия митохондриального ретикулума и особой структуры - межмитохондриальных контактов. (Daniel Mazia, 1912-1996), американский цитолог, сыгравший большую роль в изучении процессов деления и воспроизводства клеток, в исследовании структуры митотического веретена и репродукции центросом. Считал клетку супрамолекулярной системой, состоящей из множества взаимосвязанных молекулярных систем.

Кейт Портер (Keith Robert Porter, 1912-1997) - канадский биолог, один из основателей электронно-микроскопического подхода в биологии. Разработал методы изготовления ультратонких срезов, методы использования сеток с покрытием в электронной микроскопии, а также предложил использовать тетраокись осмия для работы с электронно-микроскопическими препаратами. К. Портеру принадлежит открытие цитоскелетных микротрубочек и эндоплазматического ретикулума, аутолизосом и окаймленных вакуолей. Благодаря ему был основан первый ведущий журнал по клеточной биологии, который носит сейчас название “Journal of Cell Biology”.

Джордж Паладе (George Emil Palade, 1912-2008) - американский биолог румынского происхождения. Обнаружил на поверхности цистерн эндоплазматического ретикулума рибонуклеиновые частицы, названные гранулы Паладе. Впоследствии выяснилось, что гранулы Паладе представляют собой ассоциированные с эндоплазматическим ретикулумом рибосомы. Паладе много работал над исследованием вакуолярной системы и везикулярного транспорта в клетке. В 1974 году ему была присуждена Нобелевская премия.

Кристиан Рене де Дюв (Christian Rene de Duve, 1917-2002) - бельгийский цитолог и биохимик, открывший существование в клетке пищеварительных органелл - лизосом. Лауреат Нобелевской премии (1974).

Альбер Клод (Albert Claude, 1899-1983) - бельгийский биохимик, благодаря которому цитология из науки описательной стала наукой функциональной. Показал непосредственную связь между внутриклеточными структурами и происходящими в клетке биохимическими процессами, участвовал во внедрении в цитологию биохимических и физических методов. А.Клод писал, что клетка - “самостоятельная и самообеспечивающаяся единица живой материи, способная накапливать, преобразовать и использовать энергию”. Лауреат Нобелевской премии (1974).

Рекомендуемая литература

Ю.С. Ченцов. Введение в клеточную биологию

Ю.С. Ченцов. Цитология: учебное пособие для университетов и медицинских вузов.

Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular biology of the cell

Молекулярная биология клетки. Пер с англ. / Под редакцией Б. Альбертса

Lodish H., Besk A., Zipursky S.L., Matsudaira P., Balximore D., Darnell J. Molecular cell biology.

История цитологии тесно связана с изобретением, использованием и усовершенствованием микроскопа. Это обусловлено с тем, что человеческий глаз не способен различать объекты с размерами менее 0,1 мм, что составляет 100 микрометров (сокращ. микрон или мкм). Размеры же клеток (а тем более, внутриклеточных структур) существенно меньше. Например, диаметр животной клетки обычно не превышает 20 мкм, растительной - 50 мкм, а длина хлоропласта цветкового растения - не более 10 мкм. С помощью светового микроскопа можно различать объекты диаметром в десятые доли микрона. Поэтому световая микроскопия является основным, специфическим методом изучения клеток.

Примечание. 1 миллиметр (мм) = 1.000 микрометров (мкм) = 1.000.000 нанометров (нм). 1 нанометр = 10 ангстрем (Å). Одному ангстрему примерно соответствует диаметр атома водорода.

Первые оптические приборы (простые линзы, очки, лупы) были созданы еще в XII веке. Но сложные оптические трубки, состоящие из двух и более линз, появляются только в конце XVI века. В изобретении светового микроскопа принимали участие Галилео Галилей, отец и сын Янсены, физик Дрюбель и другие ученые. Первые микроскопы использовались для изучения самых разнообразных объектов.

· 1665 г.: Р. Гук, наблюдая впервые под микроскопом тонкий срез пробкового дерева, обнаружил пустые ячейки, которые назвал целлюли , или клетки; фактически Р. Гук наблюдал только оболочки растительных клеток; в дальнейшем Р. Гук изучал срезы живых стеблей и обнаружил в них аналогичные ячейки, которые, в отличие от мертвых клеток пробки, были заполнены «питательным соком». Свои наблюдения Р. Гук изложил в своем труде «Микрография, или некоторые физиологические описания мельчайших телец при помощи увеличительных стекол» (1665);

· 1671 г.: Марчелло Мальпиги (Италия) и Неемия Грю (Англия), изучая анатомическое строение растений, пришли к выводу, что все растительные ткани состоят из пузырьков-клеток. Термин «ткань» («кружево») впервые употребил Н. Грю. В работах Р. Гука, М. Мальпиги и Н. Грю клетка рассматривается как элемент, как составная часть ткани. Клетки разделены между собой общими перегородками и поэтому не могут быть мыслимы вне ткани, вне организма;

· 1674 г.: голландский микроскопист-любитель Антонио ван Левенгук (1680) наблюдал одноклеточные организмы - «анималькули» (инфузории, саркодовые, бактерии) и другие формы одиночных клеток (форменные элементы крови, сперматозоиды);

В этот период главной частью клетки считалась ее стенка, и лишь спустя двести лет стало ясно, что главное в клетке не стенка, а внутреннее содержимое. В XVIII в. фундаментальные наблюдения простейших провел немецкий натуралист-любитель Мартин Ледермюллер. Однако в этот период новые сведения о клетке накапливались медленно, причем в области зоологии медленнее, чем в ботанике, поскольку настоящие клеточные стенки, которые служили главным предметом исследования, свойственны только растительным клеткам. По отношению к животным клеткам ученые не решались применить этот термин и отождествить их с растительными клетками.

В дальнейшем по мере усовершенствования микроскопа и техники микроскопирования накапливались и сведения о клетках животных и растений. Постепенно формировались представления о клетке как элементарном организме: в дальнейшем немецкий физиолог Эрнст фон Брюкке (1861) называл клетку элементарным организмом. К 30-м годам 19 века накопилось много сведений по морфологии клетки, и было установлено, что цитоплазма и ядро являются ее обязательными компонентами.

· 1802, 1808 гг.: Ш. Бриссо-Мирбе установил факт, что все растительные организмы образованы тканями, которые состоят из клеток.

· 1809 г.: Ж. Б. Ламарк распространил идею Бриссо-Мирбе о клеточном строении и на животных.

· 1825 г.: Я. Пуркине открыл ядро в яйцеклетках птиц.

· 1831 г.: Р. Броун впервые описал ядро в клетках растений.

· 1833 г.: Р. Броун пришел к выводу, что ядро является обязательной частью растительной клетки.

· 1839 г.: Я. Пуркине обнаружил протоплазму (гр. протос - первый и плазма вылепленный, оформленный) - полужидкое студенистое содержимое клеток.

· 1839 г.: Т. Шванн обобщил все накопленные к этому времени данные и сформулировал клеточную теорию.

· 1858 г.: Р. Вирхов доказал, что все клетки образуются из других клеток путем деления.

· 1866 г.: Геккель установил, что сохранение и передачу наследственных признаков осуществляет ядро.

· 1866-1898 гг.: описаны основные компоненты клетки, которые можно увидеть под оптическим микроскопом. Цитология приобретает характер экспериментальной науки.

· 1872 г.: профессор Дерптского (Тартусского) университета Э. Руссов,

· 1874 г.: русский ботаник И.Д. Чистяков впервые наблюдали деление клетки.

· 1878 г.: В. Флеминг ввел термин «митоз» и описал стадии деления клетки.

· 1884г.: В. Ру, О. Гертвиг, Э. Страсбургер выдвинули ядерную теорию наследственности, согласно которой информация о наследственных признаках клетки заключена в ядре.

· 1888г.: Э. Страсбургер установил явление редукции числа хромосом при мейозе.

· 1900 г.: за появлением генетики начинает развиваться цитогенетика, изучающая поведение хромосом во время деления и оплодотворения.

· 1946 г.: в биологии началось использование электронного микроскопа, что позволило изучить ультраструктуры клеток.

Цитология - наука, изучающая строение, химический состав и функции клеток, их размножение, развитие и взаимодействие в многоклеточном организме.

Предмет цитологии - клетки одно- и многоклеточных прокариотических и эукариотических организмов.

Задачи цитологии :

1. Изучение строения и функций клеток и их компонентов (мембран, органоидов, включений, ядра).

2. Изучение химического состава клеток, биохимических реакций, протекающих в них.

3. Изучение взаимоотношения клеток многоклеточного организма.

4. Изучение деления клеток.

5. Изучение возможности приспособления клеток к изменениям окружающей среды.

Для решения поставленных задач в цитологии используются различные методы.

Микроскопические методы : позволяют изучить структуру клетки и ее компонентов с помощью микроскопов (светового, фазово-контрастного, люминесцентного, ультрафиолетового, электронного); световое микроскопирование основано на потоке света; изучает клетки и их крупные структуры; электронное микроскопирование - изучение мелких структур (мембраны, рибосомы и др.) в пучке электронов с длиной волны меньше, чем у видимого света. Фазово-контрастная микроскопия — метод получения изображений в оптических микроскопах, при котором сдвиг фазэлектромагнитной волны трансформируется в контраст интенсивности. Фазово-контрастную микроскопию изобрёл Фриц Цернике, за что получил Нобелевскую премию за 1953 год. Предназначена для изучения живых, не окрашенных объектов.

Цито- и гистохимические методы - основаны на избирательном действии реактивов и красителей на определенные вещества цитоплазмы; используется для установления химического состава и локализации различных компонентов (белков, ДНК, РНК, липидов и т.п.) в клетках.

Гистологический метод - это метод приготовления микропрепаратов из нативных и фиксированных тканей и органов. Нативный материал замораживается, а фиксированный объект проходит этапы уплотнения, заливки в парафин. Затем из исследуемого материала изготавливают срезы, окрашивают и заключают в канадский бальзам.

Биохимические методы позволяют изучить химический состав клеток и протекающие в них биохимические реакции.

Метод дифференциального центрифугирования (фракционирования) : основан на разной скорости оседания компонентов клетки;сначала клетки разрушают до однородной (гомогенной) массы, которую переносят в пробирку с раствором сахарозы или хлорида цезия и подвергают центрифугированию; выделяет отдельные компоненты клетки (митохондрии, рибосомы и др.) для последующего изучения другими методами.

Метод рентгеноструктурного анализа: после введения в клетку атомов металла исследуется пространственная конфигурация (пространственнаое расположение атомов и группировок атомов) и некоторые физические свойства макромолекул (белок, ДНК).

Метод авторадиографии - введение в клетку радиоактивных (меченых) изотопов - чаще всего изотопы водорода (3 Н), углерода (14 С) и фосфора (32 Р); изучаемые молекулы по радиоактивным меткам обнаруживают с помощью счетчика радиоактивных частиц или по способности засвечивать фотопленку, а затем изучают их включения в вещества, синтезируемые клеткой; позволяет изучить процессы матричного синтеза и деления клеток.

Метод замедленной киносъемки и фотосъемки позволяет проследить и зафиксировать процессы деления клеток через мощные световые микроскопы.

Микрохирургические методы - оперативное воздействие на клетку: удаление или имплантирование компонентов клеток (органоиды, ядро) из одной клетки в другую с целью изучения их функций, микроинъекции различных веществ и др.

Метод культуры клеток - выращивание отдельных клеток многоклеточных организмов на питательных средах в стерильных условиях; дает возможность изучать деление, дифференцировку и специализацию клеток, получать клоны растительных организмов.

Знание основ химической и структурной организации, принципов функционирования и механизмов развития клетки исключительно важно для понимания сходных черт, присущих сложно устроенным организмам растений, животных и человека. Разработка метода ЭКО - пример практического применения цитологических знаний.

Лекция1 ЦИТОЛОГИЯ КАК НАУКА

Планлекции

1. Предмет, цели и задачи курса. Место цитологии в системе биологических наук.

2. История открытия клетки.

3. Теория возникновения клеток-мешочков К. Вольфа.

4. Клеточная структура животных тканей.

5. Первые описания содержимого клетки.

Предмет, цели и задачи курса. Место цитологии в системе биоло-

гических наук. Цитология – это наука о развитии, строении и жизнедеятельности клеток. В связи с этим цитология без преувеличения занимает ключевую позицию в биологии, так как в основе всех функций организма лежат процессы, протекающие на клеточном уровне. Цитология – это комплексная биологическая дисциплина, в которой изучаются различные стороны учения о клетке.

Академик А. А. Заварзин, биолог-эволюционист, писал, что в те рмине «клетка» соединяются два понятия: «Когда говорят о клетке вообще, то подразумевают элементарную организацию живого вещества, вне которого нет жизненного процесса; когда же говорят об определенной клетке, например, о нервной или мышечной, то подразумевают не только клеточную отдельность со всеми ее общими свойствами, но и совершенно конкретную ее форму: нейрон или мышечное веретено» .

Клод Бернар определял клетку как «первого представителя жизни» ; Рудольф Вирхов – как «последний морфологический элемент всего живого» .

В. Я. Александров считал, что «клетка – это элементарная живая система, состоящая из двух частей – цитоплазмы и ядра – и являющаяся основой строения, развития и жизнедеятельности всех животных и растительных организмов» .

Следовательно, клетка – это элементарная самовоспроизводящаяся единица структуры и функции всех живых существ. Клеточная организация присуща как одноклеточным микроорганизмам, так и многоклеточным макрообъектам. Несмотря на различия между отдельными клетками, в каждой из

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 1 ЦИТОЛОГИЯ КАК НАУКА

них можно выделить четыре основные структурно-функциональные подсистемы (рис. 1.1 ):

1. Все клетки окружены плоскими двухслойными мембранами, структурную основу которых составляют амфифильные молекулы липидов; в подобные мембраны «вмонтированы» различные белки, определяющие особенности их функционирования.

2. Наследственная информация во всех клетках хранится в виде двуспиральной молекулы ДНК, где она записана в виде линейного текста из триплетных кодонов, состоящих из четырех типов дезоксирибонуклеотидов: А, Т, Г, Ц.

3. Во всех клетках имеется принципиально одинаково устроенный аппарат биосинтеза белков, центральную роль в котором играют РНК.

4. Для всех клеток характерно существование еще одной подсистемы – ограниченной мембраной цитоплазмы с локализованными в ней фермента-

ми .

Рис. 1.1. Основные структурно-функциональные подсистемы клетки

Взаимоотношение между организмом и клеткой на различных уровнях организации живой материи существенно меняется. У бактерий и простейших организм представляет в то же время клетку; в многоклеточном целостном организме развитие и жизнедеятельность клеток регулируются системой интеграционных механизмов. Поэтому одной из важнейших задач цитологии является изучение способов регулирующего воздействия макроорганизма на тканевые клетки.

По мнению А. А. Заварзина, современный этап развития биологии характеризуется как углубляющейся дифференциацией наук, так и их синтезом на основе разностороннего анализа универсальных закономерностей организации биологических систем.

Данная тенденция особенно проявляется в развитии наук о клеточном уровне организации живой материи. Поэтому важно определить роль каждой

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 1 ЦИТОЛОГИЯ КАК НАУКА

науки в формирующемся синтетическом системном подходе к изучению процессов, протекающих на рассматриваемом уровне организации. Общая цитология – наука о клетке, наука о клеточном уровне организации живой материи. Предметом общецитологических исследований являются конкретные разновидности клеток (клетки про- и эукариот, клетки животных и растительных одноклеточных и многоклеточных организмов, а в пределах последних – клетки различных направлений специализации). Эти же объекты находятся в центре внимания таких наук, как частная цитология, гистология, эмбриология, микробиология, физиология и т. д. Но и в этих науках уделяется особое внимание специфическим особенностям данного типа клеток. В общей же цитологии при исследовании конкретных разновидностей клеток целью является выяснение общих закономерностей организации клеточных структур и внутриклеточных процессов, универсальных для всех клеток, а также общих закономерностей организации регуляторных интегративных механизмов целостной клетки.

Несмотря на различные конечные задачи специальных наук и общей цитологии, они тесно связаны между собой. С одной стороны, для понимания общих закономерностей организации клеток необходимо выяснить конкретные проявления этих закономерностей, т. е. всего спектра общих признаков, свойственных конкретным разновидностям клеток. С другой стороны, полное выяснение специфических особенностей конкретного типа клеток требует знания тех общих механизмов, на основе которых и появляется та или иная специфическая особенность.

В организации любой клетки выделяют следующие уровни:

молекулярный;

надмолекулярный;

органоидный;

субсистемный;

системный.

Низшие уровни организации клетки находятся в центре внимания таких наук, как органическая химия, биохимия, молекулярная биология. На органоидном, субсистемном и системном уровнях доминирующее значение имеют уже цитологические науки. При анализе клеточных структур широко используются биохимические, молекулярно-биологические методы. Благодаря этому интересы цитологов, биохимиков, биофизиков, физиологов, молекулярных биологов, генетиков во многих случаях совпадают. Особенностью общей цитологии является и ее тесная связь с науками, которые изучают механизмы организации живой материи на ее низших уровнях. Глубокое знание закономерностей молекулярного и надмолекулярного уровней организации необходимо цитологам для успешного анализа высших уровней организации клетки. Прогрессивное развитие цитологии во многом обусловлено внедрением в практику некоторых принципиально новых методов, оказавших существенное влияние на разработку ее основных проблем.

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 1 ЦИТОЛОГИЯ КАК НАУКА

История открытия клетки. Развитие учения о клетке тесно связано с изобретением микроскопа (от греческого «микрос» – небольшой, «скопео» – рассматриваю). Первый микроскоп был сконструирован в 1610 г. Галилеем и представлял собой сочетание линз в свинцовой трубке.

Впервые микроскоп применил Р. Гук. В 1665 г. он впервые описал клеточное строение пробки, стеблей и др. и ввел термин «клетка». Р. Гук сделал первую попытку подсчитать количество клеток в определенном объеме пробки. Он, во-первых, сформулировал представление о клетке как о ячейке, полностью замкнутой со всех сторон. Во-вторых, Р. Гук установил факт широкого распространения клеточного строения растительных тканей.

Эти два основных вывода и определили направление дальнейших исследований в этой области.

В 1671–1679 гг. итальянец Марчелло Мальпиги дал первое систематическое описание микроструктуры органов растений, положившее начало анатомии растений.

В 1671–1682 гг. англичанин Неемия Грю также очень подробно описал микроструктуры растений; ввел термин «ткань» для обозначения понятия совокупности «пузырьков», или «мешочков».

Оба эти исследователя (они работали независимо друг от друга) дали изумительные по точности описания и рисунки (рис. 1.2 ). Они пришли к одному и тому же выводу относительно всеобщности построения растительной ткани из пузырьков.

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 1 ЦИТОЛОГИЯ КАК НАУКА

Рис. 1.2. Рисунки М. Мальпиги срезов различных растительных тканей (Из книги «Анатомия растений», 1679 г.)

После исследований Р. Гука, М. Мальпиги и Н. Грю факт существования клеток-ячеек в растительных тканях не вызывал сомнений. О клетках упоминали различные авторы, но должного значения им не придавалось, и они рассматривались как одна из структур, обнаруживаемая при изучении растительных тканей под микроскопом. Рассматривая и описывая клетки, исследователи начала XVIII в. не ставили вопроса об их возникновении.

Теория возникновения клеток-мешочков К.Вольфа. В 1759 г. пе-

тербургский академик Каспар Фридрих Вольф создал первую теорию клеткообразования в растительных тканях. Вольф изучал эмбриональное развитие организмов. Он говорил о клетке в связи с явлениями роста или распределения вещества в организме. Считал, что молодые органы растений состоят из гомогенной, вязкой или студневидной массы. Их рост осуществляется таким образом, что в них из более старых частей выпадают капли жидкого вещества, пограничный слой которого загустевает и капля превращается в ячейку-клетку. Если капля движется в основном вязком веществе медленно, то ее стенки успевают затвердевать, так возникает трубочка-сосуд. По мере того как все новые и новые капли вдвигаются между уже возникшими, создается обычная пузыристая структура растительной ткани. Вольф считал, что не клетки образуют сосуды, а сосуды – клетки.

Клеточная структура животных тканей. Изучение животной клетки значительно отставало; это связано с тем, что клетки животных увидеть в микроскоп значительно труднее, так как они намного мельче растительной клетки и не имеют столь резко выраженных границ.

В 1676–1719 гг. Антон ван Левенгук открыл мир микроскопических животных, впервые описал красные кровяные клетки и сперматозоиды.

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 1 ЦИТОЛОГИЯ КАК НАУКА

В 1781 г. Феликс Фонтана первый увидел и нарисовал клетки животных с ядрами (рис. 1.3 ).

Рис. 1.3. Рисунки Феликса Фонтана, изображающие слущившийся кусочек кожи угря (слева) и две клетки крови (справа), 1787 г.

Таким образом, в XVII–XVIII вв. клеточная структура описывалась отдельными учеными неоднократно. В отношении растительных тканей был накоплен значительный фактический материал. Однако клеточному строе-

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 1 ЦИТОЛОГИЯ КАК НАУКА

нию не придавали принципиального значения. Клетка как элементарная живая единица еще никем не рассматривалась. Единственной попыткой понять возникновение клетки была теория Вольфа.

Большую роль в развитии науки о клетке сыграли исследования французского ботаника Бриссо де Мирбеля. В 1801 г. Мирбель положил начало сравнительному изучению клеток растений. Однако он защищал все тот же взгляд на природу клеток как на пузырьки, разделенные общей стенкой. Против этой точки зрения выступили многие немецкие исследователи. Данный вопрос привлек к себе настолько большое внимание, что Геттингенская академия в 1804 г. объявила денежную премию за ее разрешение. Эта премия была поделена между ботаниками Г. Линком и К. Рудольфи. Они разрешили вопрос о природе клеток. Пришли к заключению об обособленности клеток и о наличии у них собственных мембран, окружающих их со всех сторон. Тот же вывод был сделан Л.Х. Тревиранусом.

В 1812 г. И. Мольденгауер окончательно доказал индивидуальность клеток путем их изоляции. Он показал, что каждая из клеток имеет свою собственную оболочку.

Линк добился полного выделения клеток из тканей путем их длительного кипячения.

Было создано новое представление о клетке. Наиболее четко оно было сформулировано в 1830 г. Францем Мейеном. Он написал первую сводку по анатомии растений и сформулировал представление о клетке. «Клетка растительного организма представляет собой пространство, вполне замкнутое вегетативной мембраной» .

Данный период – это период собирания материала, накопления многочисленных сведений о тончайшей структуре растений.

Первые сведения о животной клетке были получены Левенгуком и Фонтана. Изучать животные клетки было трудно, так как техника того времени не позволяла получать тонкие срезы через мягкие ткани животных, не был известен метод фиксации и уплотнения органов, животные клетки относительно очень мелкие, границы клеток весьма неотчетливы.

Не случайно, что животные клетки были обнаружены и изучены не сразу. Анри Мильн-Эдвардс имел хороший микроскоп, но он готовил препараты, раздавливая ткани между двумя стеклами, в силу этого наряду с настоящими клетками он на рисунках изображал капельки жира, отдельные яд-

ра и т. д., принимая и их за клетки.

Анри Дютроше описал ряд клеток из животных тканей.

В 1830–1845 гг. Ян Пуркиня и его ученики усовершенствовали микроскопическую технику и правильно описали клетки в многочисленных органах животных. Во всех тканях они обнаружили клетки, однако называли их зернами или шариками. Ими был открыт реснитчатый эпителий, описано движение ресничек. Они изучили нервные клетки и дали их рисунки (рис. 1.4 ).

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 1 ЦИТОЛОГИЯ КАК НАУКА

Рис. 1.4. Рисунки Я. Пуркиня, изображающие «зернышки» (клетки), из которых состоят ткани органов животных

Первые описания содержимого клетки. В конце 18 в., в 1774 г., Бо-

навентура Корти видел и описал активное движение жидкого содержимого

в растительной клетке.

В 1811 г. более подробно были изучены протоплазматические токи

Тревиранусом.

В клеточном содержимом было обнаружено наличие слизи, клееобразных веществ, сахара, хлорофилловых зерен, различных кристаллов, зерен крахмала и т. д.

Курт Шпренгель большое

внимание

уделил зернам крахмала, полагая, что из них

путем набухания образуются клетки. Эта ги-

потеза не имела успеха и была полностью

опровергнута.

Обнаружено клеточное ядро. Впервые

в 1830 г. его описал Пуркиня под названием

«зародышевого пузырька».

В 1831–1833 гг. Роберт Броун обнару-

жил ядро в растительных клетках. Он дал

ему название – «nucleus». Р.Броун настаивал

на постоянном наличии ядра во всех живых

клетках. Роль и значение ядра еще не были

известны.

В 1837 г. Мейен заявил, что ядро пред-

ставляет собой «конденсированную в комо-

чек слизь, а возможно, и запасное питатель-

Роберт Броун (1773–1858)

ное вещество».

 Цитология с основами гистологии. Конспект лекций

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция2 КЛЕТОЧНАЯ ТЕОРИЯ

Планлекции

1. Основные даты развития клеточной теории.

2. Клеточная теория Шванна – Вирхова.

3. Основные постулаты современной клеточной теории.

Основные даты развития клеточной теории. Развитие микроскопии привело к пониманию того, что клетка из себя представляет. Клеткам стали приписывать значение простейших органических структурных элементов. Искали элементарную биологическую единицу. Впервые Лоренц Окен таковыми стал считать клетки. Он в 1809 г. создал умозрительную теорию строения и развития организмов, в которой элементами являлись «инфузории» – клетки. Считал, что сложные организмы – это сумма элементарных организмов, которые, войдя в его состав, живут общей жизнью целого, но в то же время пр о- должают оставаться независимыми. Эти элементарные организмы – пузырьки с плотной оболочкой и жидким содержимым; «в философском смысле они могут быть названы инфузориями» [ 22 ]. Л. Окен сформулировал принцип сведения строения сложных организмов к элементарным единицам, во всей этой концепции выражена эволюционная идея, хотя он развития во времени не признавал.

В 1834–1847 гг. профессор Медико-хирургической академии в Петербурге П. Ф. Горянинов сформулировал принцип, согласно которому клетка является универсальной моделью организации живых существ. Горянинов делил мир живых существ на два царства: царство бесформенное, или молекулярное, и органическое, или клеточное. Он писал, что «…органический мир есть прежде всего клеточное царство …» . Развивал представление

о возникновении живых существ из неорганического мира. Считал, что зерна слизи, скученные вокруг первичного маленького пузырька, образуют ядро, или цитобласт, которое способно развиваться в клетку. Так возникают наиболее просто организованные тела. П.Ф. Горянинов связал проблему возникновения жизни с происхождением клетки.

В 20-х г. XIX в. наиболее значительные работы в области изучения растительных и животных тканей принадлежат французским ученым Анри Дютроше (1824 г.), Франсуа Распайлю (1827 г.), Пьеру Тюрпену (1829 г.). Они доказывали, что клетки (мешочки, пузырьки) являются элементарными структурами всех растительных и животных тканей.

Эти исследования подготавливали почву для клеточной теории. Большую трудность для формирования клеточной теории представляла

неизученность микроскопической анатомии животных. Гистология животных уже существовала. Она была разработана Яном Пуркиня и его учениками.

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 2 КЛЕТОЧНАЯ ТЕОРИЯ

Он первым применил окраску, ввел просветляющие среды для препаратов. Его ученик Ошатц сконструировал первый микротом. В 1837 г. Пуркиня в докладе обществу естествоиспытателей в Праге высказал теорию «ядросодержащих зернышек» (клеток). Он говорил об аналогии «клеток» растений и «зернышек» животных. Выдвинул положение построения тела животных из клеток.

Иоганнес Мюллер на основании изучения ткани хорды высказал представление о соответствии в клеточном строении растений и животных (1838 г.).

Матиас Шлейден изучал возникновение клеток в процессе роста различных частей растений. Он писал «… как для физиологии растений, так и для общей физиологии жизнедеятельность отдельных клеток является главнейшей и совершенно неизбежной основой, и поэтому, прежде всего, встает вопрос, как же собственно возникает этот маленький своеобразный организм клетка» . Его теория клеткообразования была им позднее названа теорией цитогене-

Матиас Шлейден (1804–1881) зиса (1838 г.); существенным является то обстоятельство, что она впервые связала

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 2 КЛЕТОЧНАЯ ТЕОРИЯ

вопрос возникновения клетки с ее содержимым и (в первую очередь) с ядром.

Возникновение клеток по Шлейдену представлено на рис. 1.5 .

Рис. 1.5. Схема процесса возникновения клеток по представлению М. Шлейдена (1838 г.)

Тело клетки Шлейден обозначил термином цитобластема (этот термин принадлежит Шванну, цитос – клетка, бластео – образовывать).

Таким образом, по его теории новая клетка может образовываться в старых, центр ее возникновения – ядро. Теория цитогенеза, а именно общность происхождения клеток, явилась фундаментом для клеточной теории Шванна.

Клеточная теория Шванна – Вирхова. В 1839 г. Теодор Шванн, ис-

ходя из генетического принципа, обосновал клеточную теорию всех организмов. Постулаты его теории:

все ткани состоят из клеток;

общий принцип развития этих структур;

самостоятельная жизнедеятельность каждой отдельной клетки. Вальдейер (1909 г.) считал, что «заслуга Шванна заключается не в том,

что он открыл клетки как таковые, а в том, что он научил исследователей понимать их значение» .

В клеточной теории Шванна впервые была дана обоснованная обобщающая и ведущая идея трактовки строения организма . Она стала общепризнанной и вызвала большой интерес к детальному изучению строения ор-

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 2 КЛЕТОЧНАЯ ТЕОРИЯ

ганизмов. Карл Рейхерт писал, что «…интерес к ней стал всеобщим и разносторонним после того, как открытие клетки дало основание к планомерному развитию микроскопической анатомии …». Однако эндогенная теория возникновения клеток сыграла отрицательную роль в развитии эмбриологии. Ряд исследователей стали допускать возникновение целых органов прямо из бесструктурной массы. Большая заслуга в выяснении клеточной природы ряда тканей и в доказательстве процесса деления как единственного пути размножения клетки принадлежит Роберту Ремаку.

Окончательный удар теории цитогенеза был нанесен Рудольфом Вирховым. В 1859 г. Р. Вирхов, основываясь на исследованиях Ремака, пересмотрел и развил клеточную теорию, заменив представление о цитогенезе законом: «всякая клетка от клетки».

В последней трети XIX в. был сделан ряд крупнейших открытий, обогативших цитологическую науку.

В 1871 г. И.Д. Чистяков обнаружил хромосомы, описал способы деления ядра. А дату появления его классического труда о растительной клетке – 1874 г. – следует считать началом развития цитологии в России [ 17 ].

1875 г. – Страсбургер подробно описал деление ядра. 1898 г. – В.И. Беляев описал редукционное деление.

1898 г. – С.Г. Навашин открыл явление двойного оплодотворения у покрытосеменных и т. д.

Основные постулаты современной клеточной теории. Основные по-

ложения клеточной теории Шванна – Вирхова сохранили свое значение и на сегодняшний день.

Основные постулаты современной клеточной теории следующие: 1. Клетка – элементарная единица живого: вне клетки нет жизни.

Живому свойствен ряд совокупных признаков: способность к воспроизведению (репродукции), использование и трансформация энергии, метаболизм, чувствительность, изменчивость.

Такую совокупность признаков можно обнаружить на клеточном уровне. Из клетки можно выделить отдельные ее компоненты, даже молекулы, многие из них обладают специфическими функциональными особенностями. Вне клетки работают многие ферменты, выделенные рибосомы в присутствии необходимых факторов могут синтезировать белок и т. д. Все эти клеточные компоненты, структуры обладают лишь частью набора свойств живого. Только клетка как таковая является наименьшей единицей, обладающей всеми взятыми свойствами, отвечающими определению «живое».

Клетки имеют различную морфологию, величину. Встречаются два типа организации клеток: прокариотические – доядерные и эукариотические – собственно ядерные (рис. 1.6 , 1.7 ). Несмотря на морфологические отличия про – и эукариотические клетки имеют много общего, что позволяет отнести их к одной, клеточной, системе организации живого (одеты плазматической мембраной, обладающей сходной функцией переноса веществ из клетки

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 2 КЛЕТОЧНАЯ ТЕОРИЯ

и внутрь ее; синтез белка происходит на рибосомах; сходны процессы синтеза РНК, репликация ДНК; похожи биоэнергетические процессы).

Рис. 1.6. Комбинированная схема прокариотической клетки: 1 – клеточная стенка; 2

– плазматическая мембрана; 3 – ДНК нуклеоида; 4 – полирибосомы цитоплазмы; 5 – мезосома; 6 – ламеллярные структуры; 7 – впячивания плазмалеммы; 8 – скопления хроматофоров; 9 – вакуоли с включениями; 10 – бактериальные жгутики; 11 – пластинчатые тилакоиды

а б

Рис. 1.7. Комбинированная схема строения эукариотической клетки: а – клетка животного; б – растительная клетка; 1 – ядро с хроматином и ядрышками; 2 – цитоплазматическая мембрана; 3 – клеточная стенка; 4 – поры в клеточной стенке, через которые сообщается цитоплазма соседних клеток; 5 – шероховатая эндоплазматическая сеть; 6 – гладкая эндоплазматическая сеть; 7– пиноцитозная вакуоль; 8 – аппарат Гольджи; 9 – лизосомы; 10 – жировые включения; 11 – клеточный центр; 12 – митохондрия; 13 – рибосомы и полирибосомы; 14 – вакуоль; 15 – хлоропласт

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 2 КЛЕТОЧНАЯ ТЕОРИЯ

Ю. С. Ченцов считает, что клетка – это ограниченная активной мембраной, упорядоченная структурированная система биополимеров (белков, нуклеиновых кислот) и их макромолекулярных комплексов, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом, т. е. клетка – это самоподдерживающаяся и самовоспроизводящаяся система биополимеров.

2. Клетка – единая система, включающая множество закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование, состоящее из сопряженных функциональных единиц – органелл или органоидов.

Клетка содержит множество типов внутриклеточных структур, выполняющих разнообразные функции, каждый из которых специализирован на выполнении определенных функций. Каждая из функций обязательна, без выполнения ее клетка не может существовать. Клетку можно «разложить» на ряд компонентов, выполняющих свои функции, но каждая из них представляет собой новую систему или подсистему. Например: ядро – система хранения, воспроизведения и реализации генетической информации и т. д.

3. Клетки гомологичны по строению и по основным свойствам.

Разные клетки растений и животных сходны. Гомологичность строения клеток наблюдается внутри каждого из типов клеток (рис. 1.6 , 1.7 ). Гомологичность в строении клеток определяется сходством общеклеточных функций, направленных на поддержание жизни самих клеток и на их размножение. Разнообразие же в строении клеток многоклеточных организмов – это результат функциональной специализации. Например, в нервной клетке кроме общеклеточных компонентов имеются специфические: наличие длинных и разветвленных клеточных отростков, оканчивающихся специальными структурами, передающими нервные импульсы; в цитоплазме – тигроид; в клеточных отростках – большое количество микротрубочек. Все эти особенности нервной клетки связаны с ее специализацией – передачей нервного импульса.

4. Клетка увеличивается в числе путем деления исходной клетки после удвоения ее генетического материала (ДНК): клетка от клетки.

Размножение прокариотических и эукариотических клеток происходит путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала.

У эукариотических клеток единственно полноценный способ деления – митоз или мейоз при образовании половых клеток. При этом образуется клеточное веретено, с помощью которого равномерно по двум дочерним клеткам распределяются хромосомы.

У прокариотических клеток также имеется специальный аппарат разделения клеток.

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 2 КЛЕТОЧНАЯ ТЕОРИЯ

5. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных

в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).

Клетка в многоклеточном организме – это единица функционирования и развития. Первоосновой всех реакций целостного организма является клетка.

Рост организма, увеличение его биомассы есть результат размножения клеток и выработки ими разнообразных продуктов.

Поражение клеток, изменение их свойств – это основа для развития заболеваний.

6. Клетки многоклеточных организмов тотипотентны, то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию – к дифференцировке.

Индивидуальное развитие от одной клетки до многоклеточного организма – это результат последовательного, избирательного включения работы разных генных участков хромосомы в различных клетках. Это приводит

к появлению клеток со специфическими для них структурами и особыми функциями, т.е. к процессу дифференцировки.

Дифференцировка – это результат избирательной активности разных генов в клетке по мере развития многоклеточного организма.

Следовательно, любая клетка тотипотентна. Тотипотентность ядер клеток организма представлена на рис. 1.8 .

Рис. 1.8. Тотипотентность ядер клеток организма: а – ядро, выделенное из клетки кишечника головастика Xenopus laevis; б – яйцеклетка, лишенная ядра путем облучения; 1 – выделение ядра из соматической клетки; 2 – облучение ооцита; 3 – пересадка ядра; 4 – дробящаяся яйцеклетка; 5 – личинка

Однако в разных клетках одни и те же гены могут находиться или в активном, или в репрессированном состоянии.

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция3 МЕТОДЫ ЦИТОЛОГИИ И ГИСТОЛОГИИ

Планлекции

1. Световая микроскопия. Фазово-контрастная микроскопия. Поляризационная микроскопия. Интерференционная микроскопия. Микроскопия в темном поле. Ультрафиолетовая микроскопия. Флуоресцентная микроскопия.

2. Витальное изучение клеток. Метод культуры тканей. Микрохирургия. Прижизненное окрашивание. Изучение фиксированных клеток и тканей. Химическая фиксация. Леофилизация ткани. Окрашивание. Цитохимические методы. Цитофотометрия. Авторадиография. Контрастирование корпускулярных объектов. Ультрамикротомия.

3. Специальные методы электронной микроскопии биологических объектов: метод трансмиссионной, высоковольтной, сканирующей электронной микроскопии.

Световая микроскопия. Развитие цитологии тесно связано с усовершенствованием микроскопов и методов микроскопического исследования. Даже сейчас, несмотря на бурное развитие электронной микроскопии, световая микроскопия не теряет своего значения, в первую очередь для прижизненного изучения клеток.

Световой микроскоп – это оптическая система, состоящая из конденсора, объектива и окуляра (рис. 1.9 ). Пучок света от источника освещения собирается в конденсоре, направляется на объект; пройдя через объект, лучи света попадают в систему линз объектива, они строят первичное изображение, которое увеличивается с помощью линз окуляра. В современных микроскопах объективы сменные.

Рис. 1.9. Виды световой микроскопии

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Одной из важнейших характеристик микроскопа является его разрешающая способность.

Разрешающая способность – это минимальное расстояние между двумя точками, при котором они еще раздельно изображаются данной оптической системой.

Разрешающая сила микроскопа (d ) определяется его объективом, так как окуляр дает только вторичное увеличение изображения, отбрасываемого объективом, и вычисляется по формуле

d = (0,61 · λ)/(n · sinα),

где d – минимальное разрешаемое расстояние; λ – длина волны применяемого света; n – коэффициент преломления среды; α – угол между оптической осью объектива и наиболее отклоняющимся лучом, попадающим в объектив

(рис. 1.10 ).

Знаменатель этой дроби зависит от конструкции объектива и является для каждого объектива величиной постоянной и носит название численной апертуры объектива (А ).

А = n · sinα.

Чем больше апертура объектива, тем выше разрешение микроскопа. Численную апертуру можно увеличить двумя путями:

1. Можно увеличить угол зрения объектива (α), что и делается в объективах с большим увеличением. Однако угол α не может быть больше 90°, а sinα – больше 1.

2. Можно увеличить преломление среды, находящейся между препаратом

и объективом. Поэтому наиболее сильные объективы делаются иммерсионными, так как n иммерсионного масла равно 1,515, воды– 1,33, а воздуха– 1.

Численная апертура сухих систем на практике не превосходит 0,95, наиболее высокая апертура у масляноиммерсионных объективов и равна 1,4.

Разрешающая способность микроскопа зависит не только от апертуры, но и от длины волны света.

С применением длины волны света 550 нм наименьший диаметр видимых частиц составит 0,24 микрона, для ультрафиолетового света (260–280 нм) d = 0,13–0,14 микрон.

Обычно в световых микроскопах используются источники освещения в видимой области спектра (400–700 нм), поэтому максимальная разрешающая способность микроскопа не может быть выше 0,2–0,3 микрон. Все, что может дать световой микроскоп как вспомогательный прибор к нашему глазу, – это повысить d примерно в 1000 раз.

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 3 МЕТОДЫ ЦИТОЛОГИИ И ГИСТОЛОГИИ

Рис. 1.10. Угол входного отверстия объектива

Обычный световой микроскоп используется везде, где структуры объекта достаточно контрастны и хорошо различимы.

Контрастность изображения зависит от амплитуды световых колебаний, если объект поглощает часть света, то амплитуда колебаний снижается и объект воспринимается глазом как более темный. Если объект избирательно поглощает лучи определенных длин волн, создается цветовой контраст. Однако большинство живых клеток недостаточно контрастны: структуры внутри них прозрачны и поэтому видны плохо. Для изучения таких объективов были разработаны специальные виды световой микроскопии.

Фазово-контрастная микроскопия широко используется для наблюдений за живыми клетками, позволяет резко повысить контрастность изображения объекта.

Принцип метода состоит в выявлении сдвигов фазы световых колебаний, которые возникают, когда свет проходит через структуру, хотя и не поглощающую, но имеющую показатель преломления, отличный от такового окружающей его среды.

Однако фазовые сдвиги глазом непосредственно не улавливаются. В объектив фазово-контрастного микроскопа вмонтирована специальная пластинка, проходя через которую луч света испытывает дополнительный сдвиг

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 3 МЕТОДЫ ЦИТОЛОГИИ И ГИСТОЛОГИИ

фазы колебаний. При построении изображения взаимодействуют лучи, находящиеся в одной фазе либо в противофазе, но обладающие разной амплитудой. Создается светло-темное контрастное изображение объекта.

Поляризационная микроскопия применяется в цитологии для специальных целей. Позволяет выявить структуры с упорядоченным расположением молекул (например: кристаллы или фибриллярные белки, волокна веретена деления, миофибриллы и т. д.), то есть изучаются объекты, обладающие изотропией. Такие структуры обладают двойным лучепреломлением (анизотропией). Проходящий через них световой луч разделяется на два, распространяющихся с различной скоростью и в различных направлениях.

У поляризационного микроскопа перед конденсором помещается поляризатор, который пропускает световые волны с определенной плоскостью поляризации. После препарата и объектива помещается анализатор, который может пропускать свет с той же плоскостью поляризации. Поляризатор и анализатор – это призмы, сделанные из исландского шпата (призмы Николя). Если вторую призму (анализатор) повернуть на 90° по отношению к первой, то свет проходить не будет. В том случае, когда между такими скрещенными призмами будет находиться объект, обладающий анизотропией, то есть обладающий способностью поляризовать свет, он будет виден как яркосветящийся на темном поле.

При интерференционной микроскопии пучок параллельных световых лучей от осветителя разделяется на два потока. Один из них проходит через объект и приобретает изменения в фазе колебания, другой идет мимо объекта. В призмах объектива оба потока вновь соединяются и интерферируют между собой, то есть происходит преобразование сдвига фазы в изменение амплитуды (т. е. яркости).

В результате интерференции будет строиться изображение, на котором участки клетки разной толщины или разной плотности будут отличаться друг от друга по степени контрастности, то есть величина фазового сдвига непосредственно связана с плотностью структуры, т.е. с количеством в ней сухого вещества.

Следовательно, измерив величину фазового сдвига, а также размер клетки или ее структуры, можно определить ее сухой вес.

Микроскопия в темном поле (ультрамикроскопия) основана на том, что подобно пылинкам в луче света (эффект Тиндаля) мельчайшие частицы, лежащие за пределами разрешающей способности микроскопа, становятся видимыми в лучах, идущих под таким большим углом, что в объектив они непосредственно не попадают.

В объектив попадает только свет, отраженный от этих частиц, и они выглядят светящимися точками на темном фоне.

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 3 МЕТОДЫ ЦИТОЛОГИИ И ГИСТОЛОГИИ

Этот метод является ценным при изучении живых клеток, живых коллоидов протоплазмы.

Ультрафиолетовая микроскопия. Поскольку стекло непрозрачно для УФ-лучей, вся оптика здесь делается или кварцевой, или зеркальной (отражательной). Изображение рассматривается на флуоресцирующем экране визуально и фотографируется.

Ценность метода состоит в том, что некоторые важные компоненты клетки, например, нуклеиновые кислоты, совершенно не поглощающие видимый свет, обладают специфическим поглощением УФ-лучей с определенной длиной волны. Микроскопирование объектов в этих случаях позволяет выявить такие вещества без всякого окрашивания.

Флуоресцентная микроскопия позволяет изучать как собственную (первичную) флуоресценцию ряда веществ, так и вторичную флуоресценцию, вызванную окрашиванием клеточных структур специальными красителями – флуорохромами.

Принцип метода заключается в том, что некоторые вещества при световом облучении сами начинают светиться, причем длина волны испускаемого ими света всегда больше, чем длина волны света, возбуждающего флуоресценцию. Для возбуждения флуоресценции пользуются или синим светом, или УФ-светом.

Собственно флуоресценцией обладают некоторые пигменты, витамины, гормоны. Можно использовать флуорохромы, они избирательно связываются с определенными структурами клетки, вызывая их вторичную флуоресценцию.

Витальное изучение клеток. Световой микроскоп позволяет видеть живые клетки. Для изучения же живых клеток, органов, тканей используют ряд методов.

Метод культуры тканей был разработан Гаррисоном, Каррелем, Берроузом, А. А. Максимовым. Суть метода: в камеру, наполненную питательной средой, помещают небольшой кусочек живой ткани. Через некоторое время на периферии такого кусочка начинается деление и рост клеток. В другом случае – вырезанный кусочек ткани обрабатывают раствором фермента, что приводит к полному разобщению клеток друг от друга. Затем взвесь отмытых клеток помещают в сосуд с питательной средой, где они опускаются на дно, прикрепляются к стеклу, начинают размножаться, образуя сначала колонию, а затем сплошной клеточный пласт.

Микрохирургия позволяет с помощью специальных микроманипуляторов выполнять различные операции на клетке и ее органоидах. С помощью микроманипулятора клетки разрезают, извлекают из них части, вводят вещества (микроинъекции) и т. д. Микроманипулятор совмещают с обычным микроскопом, в который наблюдают за ходом операции. При микроманипу-

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 3 МЕТОДЫ ЦИТОЛОГИИ И ГИСТОЛОГИИ

ляциях клетки помещают в специальные камеры, в которых и делается операция. Широко применяют микропучки УФ-света или лазерные микропучки.

Прижизненное окрашивание – окрашивание живых клеток витальными красителями в диапазоне концентраций, не вызывающих токсического эффекта, широко используется в цитологии и гистологии. По своему химическому строению витальные красители относятся к органическим соединениям ароматического ряда. Они представляют собой электролиты, которые могут быть разделены на кислотные и основные. Большинство из них являются индикаторными. На этом основано их применение для определения концентрации водородных ионов.

Многие витальные красители могут легко переходить из окисленной формы в восстановленную и обратно. Это используют для определения уровня окислительно-восстановительных процессов в клетке. При окрашивании клеток витальными красителями последние проникают в клетку, собираются в цитоплазме в виде гранул, ядро не окрашивается.

Большая часть сведений о клетке была получена на стабильном фиксированном материале.

Задачи фиксации – убить клетку, прекратить активность внутриклеточных ферментов, предотвратить распад клеточных компонентов, избежать потери структур и веществ, препятствовать появлению артефактных структур. Химическая фиксация заключается в быстрой обработке ткани растворами с целью убить клетки, сохранив их структуру по возможности неизменными.

Леофилизация ткани, при которой происходит быстрое замораживание ткани при температуре жидкого азота, затем высушивание в вакууме, позволяет избежать многих недостатков химической фиксации, обеспечивает мгновенную остановку всех процессов жизнедеятельности.

Окрашивание позволяет выявить большинство клеточных органоидов и структур. Применяют натуральные и синтетические красители. Натуральные красители употребляют в сочетании с протравами (окислы различных металлов), с которыми они образуют комплексные соединения. Синтетические красители бывают кислые и основные. В зависимости от этого они могут окрашивать различные участки клеток в разные цвета и тем самым повышать контрастность клеточных и внеклеточных компонентов.

Имеется ряд специфических приемов окрашивания, с помощью кот о- рых можно определить специфические химические вещества: белки, нуклеиновые кислоты, полисахариды, липиды, аминокислоты и т. д. Это цитохимические методы. Существует целая группа цитохимических реакций, связанная с обнаружением ферментов.

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 3 МЕТОДЫ ЦИТОЛОГИИ И ГИСТОЛОГИИ

Цитофотометрия позволяет определить количество вещества в клетке и их составных элементов по поглощению ими световых лучей определенной длины волны.

Этот метод дает возможность измерять или собственное поглощение лучей химическими компонентами клетки, или количество красителя, образовавшегося в ходе цитохимической реакции в данном месте клетки. Важно, чтобы данная реакция носила количественный характер, т. е. количество окрашиваемого продукта было бы пропорционально количеству определяемого вещества.

D = lgT 0 / T ,

где D – оптическая плотность структуры; T 0 – количество света, прошедшего через пустое место препарата; T – количество света, прошедшего через поглощающую структуру.

Для определения концентрации вещества используют микроскопыцитофотометры; для определения нуклеиновых кислот и белков – ультрафиолетовую цитометрию; применяют также иммунохимические реакции с использованием флуоресцирующих антител.

Авторадиография – регистрация веществ, меченных изотопами. Используется фотографическая регистрация излучения изотопов. С помощью этого метода можно проследить динамику различных биосинтезов в конкретных морфологических структурах, определить длительность существования веществ цитоплазмы в неизменном виде, он используется для определения расположения определенных типов нуклеиновых кислот или отдельных нуклеотидных последовательностей в составе клеточных ядер или хромосом. Суть метода – обнаружение маркированных искусственным изотопом молекул с помощью фотоэмульсии, которой покрываются срезы клеток и тканей, фиксированных в разные сроки после введения меченого предшественника.

Контрастирование корпускулярных объектов широко применяется для контрастирования вирусов, рибосом, молекул нуклеиновых кислот. Одним из распространенных методов является оттенение металлами. Для контрастирования оттенением используются платина, палладий, их сплавы, уран. При негативном контрастировании объектов растворами солей тяжелых металлов применяют молибденовокислый аммоний, уранилацетат, фосфорно-вольфра- мовую кислоту. Соли тяжелых металлов используют при позитивном контрастировании.

Ультрамикротомия позволяет получать ультратонкие срезы (0,05–

МОДУЛЬ 1 ЦИТОЛОГИЯ КАК НАУКА

Лекция 3 МЕТОДЫ ЦИТОЛОГИИ И ГИСТОЛОГИИ

Специальные методы электронной микроскопии биологических объектов. Одним из распространенных, ставшим классическим методом, применяемом при структурно-биохимических исследованиях, является метод электронной микроскопии в различных его модификациях. Эти модификации обусловлены как различными подходами к анализу изучаемых структур, так и особенностями подготовки клеток для ультраструктурных исследований.

Трансмиссионная (просвечивающая) электронная микроскопия позволяет анализировать не только все органоиды ядерного и цитоплазматического аппаратов, но и некоторые структуры, находящиеся на надмолекулярном уровне организации, например: опорные и сократительные микрофибриллы, микротрубочки и т. д.

Метод высоковольтной электронной микроскопии применяют на системном и субсистемном уровнях организации. Данный метод позволяет изучать «толстые» срезы или даже целые распластанные клетки, что дает возможность анализировать в целом сложную систему субмембранных фибрилл поверхностного аппарата клетки.

Метод сканирующей электронной микроскопии используется в исследовании функции поверхностного аппарата клетки, взаимосвязи отдельных субсистем поверхностного аппарата ядра и ряда других вопросов общей цитологии. Этот метод дает возможность объемного изучения поверхности объекта.

Большое значение в цитологических исследованиях имеет метод замораживания – скалывания. Это щадящий метод подготовки биологических объектов для ультраструктурного анализа. Суть метода: объект помещают в атмосферу жидкого азота. Моментально прекращаются все метаболические процессы. С замороженного объекта делают сколы. С поверхности сколов получают реплики путем нанесения на них металлической пленки. Эти пленки в дальнейшем исследуют под микроскопом.

Электронный микроскоп по принципу конструкции сходен с оптическим: источник освещения – катод электронной пушки, конденсорная система – конденсорная магнитная линза, объектив – объективная магнитная линза, окуляр – проекционные магнитные линзы, но вместо глаза электроны попадают на люминисцирующий экран или на фотопластинку. У электронного микроскопа достигнуто разрешение в 1Ао (0,1 нм). На экранах или фотопленках электронного микроскопа можно получить увеличение до 500000 раз. В дальнейшем при фотопечати можно получить еще 10-кратное увеличение.

На уроке мы узнаем историю возникновения цитологии, вспомним понятие клетки, рассмотрим, какой вклад внесли различные ученые в развитие цитологии.

Все живые су-ще-ства, за ис-клю-че-ни-ем ви-ру-сов, со-сто-ят из кле-ток. Но для уче-ных про-шло-го кле-точ-ное стро-е-ние живых ор-га-низ-мов было не таким оче-вид-ным, как для нас с вами. Наука, изу-ча-ю-щая клет-ку,ци-то-ло-гия , сфор-ми-ро-ва-лась лишь к се-ре-дине XIX века. Без зна-ния о том, от-ку-да бе-рет-ся жизнь, что яв-ля-ет-ся ее мель-чай-шей еди-ни-цей, вплоть до Сред-не-ве-ко-вья по-яв-ля-лись тео-рии о том, на-при-мер, что ля-гуш-ки про-ис-хо-дят от грязи, а мыши за-рож-да-ют-ся в гряз-ном белье (рис. 2).

Рис. 2. Теории Средневековья ()

«Гряз-ное белье сред-не-ве-ко-вой науки» пер-вым «раз-во-ро-шил» в 1665 г. ан-глий-ский есте-ство-ис-пы-та-тель Ро-берт Гук (рис. 3).

Рис. 3. Роберт Гук ()

Он впер-вые рас-смот-рел и опи-сал обо-лоч-ки рас-ти-тель-ных кле-ток. А уже в 1674 г. его гол-ланд-ский кол-ле-га Ан-то-ни ван Ле-вен-гук (рис. 4) пер-вым раз-гля-дел под са-мо-дель-ным мик-ро-ско-пом неко-то-рых про-стей-ших и от-дель-ные клет-ки жи-вот-ных, такие как эрит-ро-ци-ты и спер-ма-то-зо-и-ды.

Рис. 4. Антони ван Левенгук ()

Ис-сле-до-ва-ния Ле-вен-гу-ка ка-за-лись со-вре-мен-ни-кам на-столь-ко фан-та-сти-че-ски-ми, что в 1676 году Лон-дон-ское ко-ро-лев-ское об-ще-ство, куда он от-сы-лал ре-зуль-та-ты своих ис-сле-до-ва-ний, очень силь-но в них за-со-мне-ва-лось. Су-ще-ство-ва-ние од-но-кле-точ-ных ор-га-низ-мов и кле-ток крови, на-при-мер, никак не укла-ды-ва-лось в рамки то-гдаш-ней науки.

Чтобы осмыс-лить ре-зуль-та-ты труда гол-ланд-ско-го уче-но-го, по-тре-бо-ва-лось несколь-ко веков. Толь-ко к се-ре-дине XIX в. немец-кий уче-ный Тео-дор Шванн, ос-но-вы-ва-ясь на тру-дах сво-е-го кол-ле-ги Ма-тти-а-са Шлей-де-на (рис. 5), сфор-му-ли-ро-вал ос-нов-ные по-ло-же-ния кле-точ-ной тео-рии, ко-то-рой мы поль-зу-ем-ся и по сей день.

Рис. 5. Теодор Шванн и Маттиас Шлейден ()

Шванн до-ка-зал, что клет-ки рас-те-ний и жи-вот-ных имеют общий прин-цип стро-е-ния, по-то-му что об-ра-зу-ют-ся оди-на-ко-вым спо-со-бом; все клет-ки са-мо-сто-я-тель-ны, а любой ор-га-низм - это со-во-куп-ность жиз-не-де-я-тель-но-сти от-дель-ных групп кле-ток (рис. 6).

Рис. 6. Эритроциты, деление клетки, молекула ДНК ()

Даль-ней-шие ис-сле-до-ва-ния уче-ных поз-во-ли-ли сфор-му-ли-ро-вать ос-нов-ные по-ло-же-ния со-вре-мен-ной кле-точ-ной тео-рии:

  1. Клет-ка - уни-вер-саль-ная струк-тур-ная еди-ни-ца жи-во-го.
  2. Клет-ки раз-мно-жа-ют-ся путем де-ле-ния (клет-ка от клет-ки).
  3. Клет-ки хра-нят, пе-ре-ра-ба-ты-ва-ют, ре-а-ли-зу-ют и пе-ре-да-ют на-след-ствен-ную ин-фор-ма-цию.
  4. Клет-ка - это са-мо-сто-я-тель-ная био-си-сте-ма, от-ра-жа-ю-щая опре-де-лен-ный струк-тур-ный уро-вень ор-га-ни-за-ции живой ма-те-рии.
  5. Мно-го-кле-точ-ные ор-га-низ-мы - это ком-плекс вза-и-мо-дей-ству-ю-щих си-стем раз-лич-ных кле-ток, обес-пе-чи-ва-ю-щих ор-га-низ-му рост, раз-ви-тие, обмен ве-ществ и энер-гии.
  6. Клет-ки всех ор-га-низ-мов сход-ны между собой по стро-е-нию, хи-ми-че-ско-му со-ста-ву и функ-ци-ям.

Клет-ки чрез-вы-чай-но раз-но-об-раз-ны. Они могут раз-ли-чать-ся по струк-ту-ре, форме и функ-ци-ям (рис. 7).

Рис. 7. Разнообразие клеток ()

Среди них есть сво-бод-но жи-ву-щие клет-ки, ко-то-рые ведут себя как особи по-пу-ля-ций и видов, как са-мо-сто-я-тель-ные ор-га-низ-мы. Их жиз-не-де-я-тель-ность за-ви-сит не толь-ко от того, как ра-бо-та-ют внут-ри-кле-точ-ные струк-ту-ры, ор-га-но-и-ды. Они сами вы-нуж-де-ны до-бы-вать себе пищу, пе-ре-ме-щать-ся в окру-жа-ю-щей среде, раз-мно-жать-ся, то есть дей-ство-вать как ма-лень-кие, но вполне са-мо-сто-я-тель-ные особи. Таких сво-бо-до-лю-би-вых од-но-кле-точ-ных очень много. Они вхо-дят во все цар-ства кле-точ-ной живой при-ро-ды и на-се-ля-ют все среды жизни на нашей пла-не-те. В мно-го-кле-точ-ном ор-га-низ-ме клет-ка яв-ля-ет-ся его ча-стью, из кле-ток об-ра-зу-ют-ся ткани и ор-га-ны.

Раз-ме-ры кле-ток могут быть очень раз-ны-ми - от одной де-ся-той мик-ро-на и до 15 сан-ти-мет-ров - таков раз-мер яйца стра-у-са, пред-став-ля-ю-ще-го собой одну клет-ку, а вес этой клет-ки - пол-то-ра ки-ло-грам-ма. И это да-ле-ко не пре-дел: яйца ди-но-зав-ров, к при-ме-ру, могли до-сти-гать в длину целых 45 сан-ти-мет-ров (рис. 8).

Рис. 8. Яйцо динозавра ()

Обыч-но у мно-го-кле-точ-ных ор-га-низ-мов раз-ные клет-ки вы-пол-ня-ют раз-лич-ные функ-ции. Клет-ки, сход-ные по стро-е-нию, рас-по-ло-жен-ные рядом, объ-еди-нен-ные меж-кле-точ-ным ве-ще-ством и пред-на-зна-чен-ные для вы-пол-не-ния опре-де-лен-ных функ-ций в ор-га-низ-ме, об-ра-зу-ют ткани (рис. 9).

Рис. 9. Образование ткани ()

Жизнь мно-го-кле-точ-но-го ор-га-низ-ма за-ви-сит от того, на-сколь-ко сла-жен-но ра-бо-та-ют клет-ки, вхо-дя-щие в его со-став. По-это-му клет-ки не кон-ку-ри-ру-ют между собой, на-про-тив, ко-опе-ра-ция и спе-ци-а-ли-за-ция их функ-ций поз-во-ля-ет ор-га-низ-му вы-жить в тех си-ту-а-ци-ях, в ко-то-рых оди-ноч-ные клет-ки не вы-жи-ва-ют. У слож-ных мно-го-кле-точ-ных ор-га-низ-мов - рас-те-ний, жи-вот-ных и че-ло-ве-ка - клет-ки ор-га-ни-зо-ва-ны в ткани, ткани - в ор-га-ны, ор-га-ны - в си-сте-мы ор-га-нов. И каж-дая из этих си-стем ра-бо-та-ет на то, чтобы обес-пе-чить су-ще-ство-ва-ние це-ло-му ор-га-низ-му.

Несмот-ря на все раз-но-об-ра-зие форм и раз-ме-ров, клет-ки раз-ных типов схожи между собой. Такие про-цес-сы, как ды-ха-ние, био-син-тез, обмен ве-ществ, идут в клет-ках неза-ви-си-мо от того, яв-ля-ют-ся ли они од-но-кле-точ-ны-ми ор-га-низ-ма-ми или вхо-дят в со-став мно-го-кле-точ-но-го су-ще-ства. Каж-дая клет-ка по-гло-ща-ет пищу, из-вле-ка-ет из нее энер-гию, из-бав-ля-ет-ся от от-хо-дов об-ме-на ве-ществ, под-дер-жи-ва-ет по-сто-ян-ство сво-е-го хи-ми-че-ско-го со-ста-ва и вос-про-из-во-дит саму себя, то есть осу-ществ-ля-ет все про-цес-сы, от ко-то-рых за-ви-сит ее жизнь.

Все это поз-во-ля-ет рас-смат-ри-вать клет-ку как осо-бую еди-ни-цу живой ма-те-рии, как эле-мен-тар-ную живую си-сте-му (рис. 10).

Рис. 10. Схематический рисунок клетки ()

Все живые су-ще-ства, от ин-фу-зо-рии до слона или кита, са-мо-го круп-но-го на се-го-дняш-ний день мле-ко-пи-та-ю-ще-го, со-сто-ят из кле-ток. Раз-ни-ца лишь в том, что ин-фу-зо-рии - са-мо-сто-я-тель-ные био-си-сте-мы, со-сто-я-щие из одной клет-ки, а клет-ки кита ор-га-ни-зо-ва-ны и вза-и-мо-свя-за-ны как части боль-шо-го 190-тон-но-го це-ло-го. Со-сто-я-ние всего ор-га-низ-ма за-ви-сит от того, как функ-ци-о-ни-ру-ют его части, то есть клет-ки.

Список литературы

  1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология. Общие закономерности. - Дрофа, 2009.
  2. Пономарева И.Н., Корнилова О.А., Чернова Н.М. Основы общей биологии. 9 класс: Учебник для учащихся 9 класса общеобразовательных учреждений/ Под ред. проф. И.Н. Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2005
  3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Биология. Введение в общую биологию и экологию: Учебник для 9 класса, 3-е изд., стереотип. - М.: Дрофа, 2002.
  1. Krugosvet.ru ().
  2. Uznaem-kak.ru ().
  3. Mewo.ru ().

Домашнее задание

  1. Что изучает цитология?
  2. Каковы основные положения клеточной теории?
  3. Чем различаются клетки?

В современной науке важную роль занимают новые, молодые дисциплины, сформировавшиеся в самостоятельные разделы в последнее столетие и даже позже. То, что не было доступно для исследований раньше, теперь становится доступным благодаря техническим новшествам и современным научным методам, что позволяет регулярно получать новые результаты. Постоянно в средствах массовой информации мы слышим сообщения о новых открытиях в области биологии, а конкретно генетики и цитологии, эти смежные дисциплины переживают сейчас настоящий расцвет, а множество амбициозных научных проектов постоянно дают новые данные для анализа.

Одной из новых дисциплин чрезвычайно перспективных, является цитология, наука о клетках. Современная цитология – наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология – одна из относительно молодых биологических наук, ее возраст около 100 лет, хотя само понятие клетки было введено в обиход учёными гораздо раньше.

Мощным стимулом к развитию цитологии послужили разработка и совершенствование установок, приборов и инструментов для исследований. Электронная микроскопия и возможности современных компьютеров наряду с химическими методами дают все последние годы новые материалы для исследований.

Цитология как наука, её становление и задачи

Цитология (от греч. κύτος – пузырьковидное образование и λόγος – слово, наука) – раздел биологии, наука о клетках, структурных единицах всех живых организмов, ставит перед собой задачи изучения строения, свойств, и функционирования живой клетки.

Изучение мельчайших структур живых организмов стало возможным лишь после изобретения микроскопа – в 17 веке. Термин «клетка» впервые предложил 1665 г. английский естествоиспытатель Роберт Гук (1635–1703) для описания ячеистой структуры наблюдаемого под микроскопом среза пробки. Рассматривая тонкие срезы высушенной пробки, он обнаружил, что они «состоят из множества коробочек». Каждую из этих коробочек Гук назвал клеткой («камерой»)». В 1674 году голландский учёный Антони ван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано.

Однако бурное развитие цитологии началось только во второй половине 19 в. по мере развития и усовершенствования микроскопов. В 1831 Р. Броун установил существование в клетке ядра, но не сумел оценить всю важность своего открытия. Вскоре после открытия Броуна несколько ученых убедились в том, что ядро погружено в полужидкую протоплазму, заполняющую клетку. Первоначально основной единицей биологической структуры считали волокно. Однако уже в начале 19 в. почти все стали признавать непременным элементом растительных и животных тканей структуру, которую называли пузырьком, глобулой или клеткой. В 1838–1839 гг. немецкие учёные М. Шлейден (1804–1881) и Т. Шванн (1810–1882) практически одновременно выдвинули идею клеточного строения. Утверждение о том, что все ткани животных и растений состоят из клеток, составляет сущность клеточной теории. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу.

Согласно клеточной теории, все растения и животные состоят из сходных единиц – клеток, каждая из которых обладает всеми свойствами живого. Эта теория стала краеугольным камнем всего современного биологического мышления. В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли. Вначале при изучении деталей строения клеток приходилось полагаться главным образом на визуальное исследование мертвого, а не живого материала. Необходимы были методы, которые позволяли бы сохранять протоплазму, не повреждая ее, изготавливать достаточно тонкие срезы ткани, проходящие и через клеточные компоненты, а также окрашивать срезы, чтобы выявлять детали клеточного строения. Такие методы создавались и совершенствовались в течение всей второй половины 19 в.

Фундаментальное значение для дальнейшего развития клеточной теории имела концепция генетической непрерывности клеток. Сначала ботаники, а затем и зоологи (после того как разъяснились противоречия в данных, полученных при изучении некоторых патологических процессов) признали, что клетки возникают только в результате деления уже существующих клеток. В 1858 Р. Вирхов сформулировал закон генетической непрерывности в афоризме «Omnis cellula e cellula» («Каждая клетка из клетки»). Когда была установлена роль ядра в клеточном делении, В. Флемминг (1882) перефразировал этот афоризм, провозгласив: «Omnis nucleus e nucleo» («Каждое ядро из ядра»). Одним из первых важных открытий в изучении ядра было обнаружение в нем интенсивно окрашивающихся нитей, названных хроматином . Последующие исследования показали, что при делении клетки эти нити собираются в дискретные тельца – хромосомы, что число хромосом постоянно для каждого вида, а в процессе клеточного деления, или митоза, каждая хромосома расщепляется на две, так что каждая клетка получает типичное для данного вида число хромосом.

Таким образом, еще до конца 19 в. было сделано два важных заключения. Одно состояло в том, что наследственность есть результат генетической непрерывности клеток, обеспечиваемой клеточным делением. Другое – что существует механизм передачи наследственных признаков, который находится в ядре, а точнее – в хромосомах. Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.

Второй этап в развитии цитологии начинается с 1900 гг., когда были ясно сформулированы законы наследственности , открытые австрийским учёным Г.И. Менделем еще в 19 в. В это время из цитологии выделяется отдельная дисциплина – генетика , наука о наследственности и изменчивости, изучающая механизмы наследования и гены, как носители наследственной информации, заключённые в клетках. Основой генетики явилась хромосомная теория наследственности – теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом.

Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, появившиеся после 1940-х годов, позволили достичь еще больших успехов в изучении строения клетки. На данный момент цитологические методы активно используются в селекции растений, в медицине – например, в изучении злокачественных образований и наследственных заболеваний.

Основные положения клеточной теории

В 1838-1839 гг. Теодор Шванн и немецкий ботаник Маттиас Шлейден сформулировали основные положения клеточной теории:

1. Клетка есть единица структуры. Все живое состоит из клеток и их производных. Клетки всех организмов гомологичны.

2. Клетка есть единица функции. Функции целостного организма распределены по его клеткам. Совокупная деятельность организма есть сумма жизнедеятельности отдельных клеток.

3. Клетка есть единица роста и развития. В основе роста и развития всех организмов лежит образование клеток.

Клеточная теория Шванна–Шлейдена принадлежит к величайшим научным открытиям XIX в. В то же время, Шванн и Шлейден рассматривали клетку лишь как необходимый элемент тканей многоклеточных организмов. Вопрос о происхождении клеток остался нерешенным (Шванн и Шлейден считали, что новые клетки образуются путем самозарождения из живого вещества). Только немецкий врач Рудольф Вирхов (1858-1859 гг.) доказал, что каждая клетка происходит от клетки. В конце XIX в. окончательно формируются представления о клеточном уровне организации жизни. Немецкий биолог Ганс Дриш (1891) доказал, что клетка – это не элементарный организм, а элементарная биологическая система. Постепенно формируется особая наука о клетке – цитология.

Дальнейшее развитие цитологии в XX в. тесно связано с разработкой современных методов изучения клетки: электронной микроскопии, биохимических и биофизических методов, биотехнологических методов, компьютерных технологий и других областей естествознания. Современная цитология изучает строение и функционирование клеток, обмен веществ в клетках, взаимоотношения клеток с внешней средой, происхождение клеток в филогенезе и онтогенезе, закономерности дифференцировки клеток.
В настоящее время принято следующее определение клетки. Клетка – это элементарная биологическая система, обладающая всеми свойствами и признаками жизни. Клетка есть единица структуры, функции и развития организмов.

Единство и разнообразие клеточных типов

Существует два основных морфологических типа клеток, различающиеся по организации генетического аппарата: эукариотический и прокариотический. В свою очередь, по способу питания различают два основных подтипа эукариотических клеток: животную (гетеротрофную) и растительную (автотрофную). Эукариотическая клетка состоит из трех основных структурных компонентов: ядра, плазмалеммы и цитоплазмы. Эукариотическая клетка отличается от остальных типов клеток, в первую очередь, наличием ядра. Ядро – это место хранения, воспроизведения и начальной реализации наследственной информации. Ядро состоит из ядерной оболочки, хроматина, ядрышка и ядерного матрикса.

Плазмалемма (плазматическая мембрана) – это биологическая мембрана, покрывающая всю клетку и отграничивающая её живое содержимое от внешней среды. Поверх плазмалеммы часто располагаются разнообразные клеточные оболочки (клеточные стенки). В животных клетках клеточные оболочки, как правило, отсутствуют. Цитоплазма – это часть живой клетки (протопласта) без плазматической мембраны и ядра. Цитоплазма пространственно разделена на функциональные зоны (компартменты), в которых протекают различные процессы. В состав цитоплазмы входят: цитоплазматический матрикс, цитоскелет, органоиды и включения (иногда включения и содержимое вакуолей к живому веществу цитоплазмы не относят). Все органоиды клетки делятся на немембранные, одномембранные и двумембранные. Вместо термина «органоиды» часто употребляют устаревший термин «органеллы».

К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр (центриоли) и органоиды движения (жгутики и реснички). В клетках большинства одноклеточных организмов и подавляющего большинства высших (наземных) растений центриоли отсутствуют.

К одномембранным органоидам относятся: эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы, сферосомы, вакуоли и некоторые другие. Все одномембранные органоиды связаны между собой в единую вакуолярную систему клетки. В растительных клетках настоящие лизосомы не обнаружены. В то же время в животных клетках отсутствуют настоящие вакуоли.

К двумембранным органоидам относятся митохондрии и пластиды. Эти органоиды являются полуавтономными, поскольку обладают собственной ДНК и собственным белоксинтезирующим аппаратом. Митохондрии имеются практически во всех эукариотических клетках. Пластиды имеются только в растительных клетках.
Прокариотическая клетка не имеет оформленного ядра – его функции выполняет нуклеоид, в состав которого входит кольцевая хромосома. В прокариотической клетке отсутствуют центриоли, а также одномембранные и двумембранные органоиды – их функции выполняют мезосомы (впячивания плазмалеммы). Рибосомы, органоиды движения и оболочки прокариотических клеток имеют специфическое строение.