23.01.2024

Алканы все формулы. Алканы


Предельные углеводороды - это углеводороды, в молекулах которых имеются только простые (одинарные) связи (-связи). Предельными углеводородами являются алканы и циклоалканы.

Атомы углерода в предельных углеводородах находятся в состоянии sp 3 -гибридизации.

Алканы - предельные углеводороды, состав которых выражается общей формулой C n H 2n+2 . Алканы являются насыщенными углеводородами.

Изомеры и гомологи

г CH 4
метан
CH 3 —CH 3
этан
CH 3 —CH 2 —CH 3
пропан
CH 3 —(CH 2) 2 —CH 3
бутан

2-метилпропан
CH 3 —(CH 2) 3 —CH 3
пентан

2-метилбутан

2,2-диметилпропан
CH 3 —(CH 2) 4 —CH 3
гексан

2-метилпентан

2,2-диметилбутан

2,3-диметилбутан

3-метилпентан
и з о м е р ы

Физические свойства алканов

При комнатной температуре С 1 -C 4 - газы, C 5 -C 15 - жидкости, C 16 и следующие - твердые вещества; нерастворимы в воде; плотность меньше 1 г/см 3 ; жидкие - с запахом бензина.

С увеличением числа атомов углерода в молекуле возрастает температура кипения.

Химические свойства алканов

Малоактивны в обычных условиях, не реагируют с растворами кислот и щелочей, не обесцвечивают раствор KMnO 4 и бромную воду.

>

Получение алканов

>>

Циклоалканы - предельные углеводороды, состав которых выражается формулой C n H 2n . В состав молекул циклоалканов входят замкнутые углеродные цепи (циклы).

Изомеры и гомологи

г Циклопропан C 3 H 6

или
Циклобутан C 4 H 8

или
Метилциклопропан
Циклопентан C 5 H 10

или
Метилциклобутан
1,1-диметилциклопропан
1,2-диметилциклопропан
Этилциклопропан
и з о м е р ы

Упрощенно углеводородный цикл часто изображают правильным многоугольником с соответствующим числом углов.

Физические свойства мало отличаются от свойств алканов.

Химические свойства

За исключением циклопропана и циклобутана циклоалканы, как и алканы, малоактивны в обычных условиях.

Общие свойства циклоалканов (на примере циклогексана):

>

Особые свойства циклопропана и циклобутана (склонность к реакциям присоединения):

Способы получения циклоалканов

Алгоритм составления названий предельных углеводородов

  1. Найдите главную углеродную цепь: это самая длинная цепь атомов углерода.
  2. Пронумеруйте атомы углерода в главной цепи, начиная с того конца, к которому ближе разветвление.
  3. Укажите номер атома углерода в главной цепи, у которого есть заместитель и дайте название заместителю. Если заместителей несколько, расположите их по алфавиту. Перед названием одинаковых заместителей укажите номера всех атомов углерода, с которыми они связаны, и используйте умножающие приставки (ди-, три-, тетра-).
  4. Напишите название главной цепи с суффиксом -ан. Корни названий главной цепи: C 1 - мет, С 2 - эт, С 3 - проп, C 4 - бут, C 5 - пент, C 6 - гекс, С 7 - гепт, C 8 - окт, С 9 - нон, C 10 - дек. Названия незамещенных циклоалканов образуются из названия предельного углеводорода с добавлением префикса цикло-. Если в циклоалкане есть заместители, то атомы углерода в цикле нумеруются от самого простого заместителя (самого старшего, метила) к более сложному кратчайшим путем, и положения заместителей указываются так же, как и в алканах.

Задачи и тесты по теме "Тема 1. "Предельные углеводороды"."

  • Углеводороды. Полимеры - Органические вещества 8–9 класс

    Уроков: 7 Заданий: 9 Тестов: 1

  • - Человек в мире веществ, материалов и химических реакций 8–9 класс

    Уроков: 2 Заданий: 6 Тестов: 1

  • Классификация веществ - Классы неорганических веществ 8–9 класс

    Уроков: 2 Заданий: 9 Тестов: 1


  • А. Дана характеристика одного вещества-участника реакции (масса, объем, количество вещества), нужно найти характеристику другого вещества.

    Пример. Определите массу хлора, необходимого для хлорирования по первой стадии 11,2 л метана.

    Ответ: m (Cl 2) = 35,5 г.

    Б. Расчеты с использованием правила объемных отношений газов.

    Пример. Определите, какой объем кислорода, измеренного при нормальных условиях (н. у.), потребуется для полного сгорания 10 м 3 пропана (н. у.).

    Ответ: V (O 2) = 50 м 3 .

    Убедившись, что все необходимое усвоено, переходите к выполнению заданий к теме 1. Желаем успехов.


    Рекомендованная литература:
    • О. С. Габриелян и др. Химия 10 кл. М., Дрофа, 2002;
    • Л. С. Гузей, Р. П. Суровцева, Г. Г. Лысова. Химия 11 кл. Дрофа, 1999.
    • Г. Г. Лысова. Опорные конспекты и тесты по органической химии. М., ООО "Глик плюс", 1999.

Каждый класс химических соединений способен проявлять свойства, обусловленные их электронным строением. Для алканов характерны реакции замещения, отщепления или окисления молекул. Все имеют свои особенности протекания, о которых пойдет дальше речь.

Что такое алканы

Это насыщенные углеводородные соединения, которые носят название парафинов. Их молекулы состоят только из атомов углеродных и водородных, имеют линейную или разветвленную ациклическую цепочку, в которой есть лишь одинарные соединения. Учитывая характеристику класса, можно вычислить, какие реакции характерны для алканов. Они подчиняются формуле для всего класса: H 2n+2 C n .

Строение химическое

Молекула парафинов включает углеродные атомы, проявляющие sp 3 -гибридизацию. У них все валентные четыре орбитали обладают одинаковой формой, энергией и направлением в пространстве. Размер угла между энергетическими уровнями составляет 109° и 28".

Наличие одинарных связей в молекулах определяет, какие реакции характерны для алканов. В них присутствуют σ-соединения. Связь между углеродами является неполярной и слабо поляризуемой, она немного длиннее, чем в C−H. Также наблюдается смещение электронной плотности к углеродному атому, как наиболее электроотрицательному. В результате соединение C−H характеризуется малой полярностью.

Реакции замещения

Вещества класса парафинов обладают слабой химической активностью. Это можно объяснить прочностью связей между C−C и C−H, которые трудно разорвать из-за неполярности. В основе их разрушения лежит механизм гомолитический, при котором участвуют радикалы свободного типа. Именно поэтому для алканов характерны реакции замещения. Такие веществ не способны взаимодействовать с молекулами воды или несущими заряд ионами.

Им причисляют замещение свободнорадикальное, в котором водородные атомы заменяются на галогеновые элементы или другие активные группы. К таким реакциям относят процессы, связанные с галогенированием, сульфохлорированием и нитрованием. Их результатом является получение алкановых производных.

В основе механизма реакций замещения по свободнорадикальному типу лежат основные три стадии:

  1. Начинается процесс с инициирования или зарождения цепочки, в результате которого формируются свободные радикалы. Катализаторами служат источники света ультрафиолетового и нагревание.
  2. Затем развивается цепочка, в которой осуществляются последовательные взаимодействия активных частиц с неактивными молекулами. Происходит их превращение в молекулы и радикалы соответственно.
  3. Конечным этапом будет обрыв цепочки. Наблюдается рекомбинация или исчезновение активных частиц. Так прекращается развитие цепной реакции.

Процесс галогенирования

В его основе лежит механизм радикального типа. Реакция галогенирования алканов проходит при облучении ультрафиолетом и нагревании смеси из галогенов и углеводородов.

Все стадии процесса подчиняются правилу, которое высказал Марковников. В нем указано, что подвергается замещению галогеном, прежде всего, который принадлежит самому гидрированному углероду. Галогенирование протекает в такой последовательности: от третичного атома до первичного углерода.

Процесс проходит лучше у молекул алканов с длинной основной углеродной цепочкой. Это связано с уменьшением ионизирующей энергии в данном направлении, от вещества легче отщепляется электрон.

Примером может служить хлорирование молекулы метана. Действие ультрафиолета приводит к расщеплению хлора на радикальные частицы, которые осуществляют атаку на алкан. Происходит отрыв атомарного водорода и формирование H 3 C· или метильного радикала. Такая частица, в свою очередь, атакует молекулярный хлор, приводя к разрушению ее структуры и образованию нового химического реагента.

На каждом этапе процесса осуществляется замещение только одного водородного атома. Реакция галогенирования алканов приводит к постепенному формированию хлорметановой, дихлорметановой, трихлорметановой и тетрахлорметановой молекулы.

Схематически процесс выглядит следующим образом:

H 4 C + Cl:Cl → H 3 CCl + HCl,

H 3 CCl + Cl:Cl → H 2 CCl 2 + HCl,

H 2 CCl 2 + Cl:Cl → HCCl 3 + HCl,

HCCl 3 + Cl:Cl → CCl 4 + HCl.

В отличие от хлорирования молекулы метана, проведение такого процесса с другими алканами характеризуется получением веществ, у которых замещение водорода происходит не у одного атома углерода, а у нескольких. Их количественное соотношение связано с температурными показателями. В холодных условиях наблюдается уменьшение скорости образования производных с третичной, вторичной и первичной структурой.

С повышением температурного показателя быстрота формирования таких соединений выравнивается. На процесс галогенирования существует влияние фактора статического, который указывает на разную вероятность столкновения радикала с углеродным атомом.

Процесс галогенирования йодом в обычных условиях не протекает. Необходимо создание специальных условий. При воздействии на метан данным галогеном происходит возникновение йодистого водорода. На него оказывает действие йодистый метил, в результате выделяются первоначальные реагенты: метан и йод. Такая реакция считается обратимой.

Реакция Вюрца для алканов

Является методом получения с симметричной структурой. В качестве реагирующих веществ используют натрий металлический, алкилбромиды или алкилхлориды. При их взаимодействии получают галогенид натрия и увеличенную углеводородную цепь, которая является суммой двух радикалов углеводородов. Схематически синтез выглядит следующим образом: R−Cl + Cl−R + 2Na → R−R + 2NaCl.

Реакция Вюрца для алканов возможна только в том случае, если в их молекулах галогены находятся у первичного углеродного атома. Например, CH 3 −CH 2 −CH 2 Br.

Если в процессе участвует галогенуглеводорододная смесь из двух соединений, то при конденсации их цепочек образуются три разных продукта. Примером такой реакции алканов может служить взаимодействие натрия с хлорметаном и хлорэтаном. На выходе получается смесь, содержащая бутан, пропан и этан.

Кроме натрия, можно применять другие щелочные металлы, к которым относят литий или калий.

Процесс сульфохлорирования

Его еще называют реакцией Рида. Протекает она по принципу свободнорадикального замещения. тип реакции алканов на действие смеси из диоксида серы и молекулярного хлора в присутствии ультрафиолетового излучения.

Процесс начинается с инициации цепного механизма, при котором из хлора получаются два радикала. Один из них атакует алкан, что приводит к возникновению алкильной частицы и молекулы хлороводорода. К углеводородному радикалу прикрепляется серы диоксид с формированием сложной частицы. Для стабилизации происходит захват одного хлорного атома из другой молекулы. Конечным веществом является сульфонилхлорид алкана, его применяют при синтезе поверхностно-активных соединений.

Схематически процесс выглядит так:

ClCl → hv ∙Cl + ∙Cl,

HR + ∙Cl → R∙ + HCl,

R∙ + OSO → ∙RSO 2 ,

∙RSO 2 + ClCl → RSO 2 Cl + ∙Cl.

Процессы, связанные с нитрованием

Алканы вступают в реакции с кислотой азотной в виде раствора 10%, а также с азота четырехвалентного оксидом в газообразном состоянии. Условиями ее протекания являются высокие температурные значения (около 140 °C) и низкие показатели давления. На выходе продуцируются нитроалканы.

Данный процесс свободнорадикального типа назвали в честь ученого Коновалова, открывшего синтез нитрования: CH 4 + HNO 3 → CH 3 NO 2 + H 2 O.

Механизм отщепления

Для алканов характерны реакции дегидрирования и крекинга. Молекула метана подвергается полному термическому разложению.

Основным механизмом вышеуказанных реакций является отщепление атомов от алканов.

Процесс дегидрирования

При отделении атомов водорода от углеродного скелета парафинов, за исключением метана, получаются непредельные соединения. Такие химические реакции алканов проходят в условиях высокой температуры (от 400 до 600 °C) и под действием ускорителей в виде платины, никеля, и алюминия.

Если в реакции участвуют молекулы пропана или этана, то ее продуктами будет пропен или этен с одной двойной связью.

При дегидрировании четырех или пятиуглеродного скелета получаются диеновые соединения. Из бутана формируются бутадиен-1,3 и бутадиен-1,2.

Если в реакции присутствуют вещества с 6 и более атомами углеродов, то образуется бензол. В нем имеется ароматическое ядро с тремя связями двойными.

Процесс, связанный с разложением

В условиях высокой температуры реакции алканов могут проходить с разрывом связей углеродных и формированием активных частиц радикального типа. Такие процессы называют крекингом или пиролизом.

Нагревание реагирующих веществ до температур, превышающих 500 °C, приводит к разложению их молекул, в ходе которого образуются сложные смеси из радикалов алкильного типа.

Проведение при сильном нагревании пиролиза алканов с длинными углеродными цепочками связано с получением предельных и непредельных соединений. Его называют термическим крекингом. Такой процесс использовали до середины 20 века.

Недостатком было получение углеводородов с низким октановым числом (не более 65), поэтому его заменили Процесс проходит при температурных условиях, которые ниже 440 °C, и значениях давления, меньше 15 атмосфер, в присутствие алюмосиликатного ускорителя с выделением алканов, имеющих разветвлённую структуру. Примером может служить метановый пиролиз: 2CH 4 → t ° C 2 H 2 + 3H 2 . В ходе данной реакции образуется ацетилен и молекулярный водород.

Молекула метана может подвергаться конверсии. Для такой реакции необходима вода и никелевый катализатор. На выходе получается смесь из угарного газа и водорода.

Окислительные процессы

Химические реакции, характерные для алканов, связаны с отдачей электронов.

Существует автоокисление парафинов. В нем задействован свободно-радикальный механизм окисления насыщенных углеводородов. В ходе реакции из жидкой фазы алканов получают гидроперекиси. На начальном этапе молекула парафина взаимодействует с кислородом, в результате выделяются активные радикалы. Далее с алкильной частицей взаимодействует еще одна молекула O 2 , получается ∙ROO. С перекисным радикалом жирной кислоты контактирует молекула алкана, после чего выделяется гидроперекись. Примером может служить автоокисление этана:

C 2 H 6 + O 2 → ∙C 2 H 5 + HOO∙,

∙C 2 H 5 + O 2 → ∙OOC 2 H 5 ,

∙OOC 2 H 5 + C 2 H 6 → HOOC 2 H 5 + ∙C 2 H 5 .

Для алканов характерны реакции горения, которые относятся к главным химическим свойствам, при определении их в составе топлива. Они имеют окислительный характер с выбросом тепла: 2C 2 H 6 + 7O 2 → 4CO 2 + 6H 2 O.

Если в процессе наблюдается малое количество кислорода, то конечным продуктом может быть уголь или углерода двухвалентный оксид, что определяется концентрацией O 2 .

При окислении алканов под влиянием каталитических веществ и нагревании до 200 °C получаются молекулы спирта, альдегида или карбоновой кислоты.

Пример с этаном:

C 2 H 6 + O 2 → C 2 H 5 OH (этанол),

C 2 H 6 + O 2 → CH 3 CHO + H 2 O (этаналь и вода),

2C 2 H 6 + 3O 2 → 2CH 3 COOH + 2H 2 O (этановая кислота и вода).

Алканы могут окисляться при действии на них трёхчленных циклических пероксидов. К ним относят диметилдиоксиран. Результатом окисления парафинов является молекула спирта.

Представители парафинов не реагируют на KMnO 4 или марганцовокислый калий, а также на

Изомеризация

На алканы тип реакции характеризуется замещением с электрофильным механизмом. Сюда причисляют изомеризацию углеродной цепи. Катализирует данный процесс алюминия хлорид, который взаимодействует с насыщенным парафином. Примером служит изомеризация молекулы бутана, которая становится 2-метилпропаном: C 4 H 10 → C 3 H 7 CH 3 .

Процесс ароматизации

Насыщенные вещества, у которых в основной цепочке углеродной содержится шесть или больше атомов углеродных, способны проводить дегидроциклизацию. Для коротких молекул не характерна такая реакция. Результатом всегда является шестичленный цикл в виде циклогексана и его производных.

В присутствии реакционных ускорителей проходит дальнейшее дегидрирование и превращение в более устойчивое бензольное кольцо. Происходит превращение ациклических углеводородов в ароматические соединения или арены. В качестве примера служит дегидроциклизация гексана:

H 3 C−CH 2 − CH 2 − CH 2 − CH 2 −CH 3 → C 6 H 12 (циклогексан),

C 6 H 12 → C 6 H 6 + 3H 2 (бензол).

Алканами называют насыщенные углеводороды. В их молекулах атомы имеют одинарные связи. Структура определяется формулой CnH2n+2. Рассмотрим алканы: химические свойства, виды, применение.

В структуре углерода есть четыре орбиты, по которым вращаются атомы. Орбитали обладают одинаковой формой, энергией.

Обратите внимание! Углы между ними составляют 109 градусов и 28 минут, они направлены на вершины тетраэдра.

Простая углеродная связь позволяет алкановым молекулам свободно вращаться, в результате чего структуры приобретают различные формы, образуя вершины при атомах углерода.

Все алкановые соединения разделяются на две основные группы:

  1. Углеводороды алифатического соединения. Такие структуры обладают линейным соединением. Общая формула выглядит таким образом: CnH2n+2. Значение n равно или больше единицы, означает количество углеродных атомов.
  2. Циклоалканы циклической структуры. Химические свойства циклических алканов значительно отличаются от свойств линейных соединений. Формула циклоалканов в некоторой степени делает их схожими с углеводородами, обладающими тройной атомной связью, то есть с алкинами.

Виды алканов

Существует несколько видов алкановых соединений, каждой из которых имеет свою формулу, строение, химические свойства и алкильный заместитель. Таблица содержит гомологический ряд

Название алканов

Общая формула насыщенных углеводородов — CnH2n+2. Изменяя значение n, получают соединение с простой межатомной связью.

Полезное видео: алканы — строение молекул, физические свойства

Разновидности алканов, варианты реакций

В естественных условиях алканы являются химически инертными соединения. Углеводороды не реагируют на контактирование с концентратом азотной и серной кислоты, щелочью и перманганатом калия.

Одинарные молекулярные связи определяют реакции, характерные для алканов. Алкановые цепочки отличаются неполярной и слабо поляризуемой связью. Она несколько длиннее, нежели С-Н.

Общая формула алканов

Реакция замещения

Парафиновые вещества отличаются незначительной химической активностью. Объясняется это повышенной прочностью цепной связи, которую непросто разорвать. Для разрушения используют гомологический механизм, в котором принимают участие свободные радикалы.

Для алканов более естественны реакции замещения. Они не реагируют на молекулы воды и заряженные ионы. При замещении происходит замена водородных частиц галогеновыми и прочими активными элементами. Среди подобных процессов выделяют галогенирование, нитрирование и сульфохлорирование. Такие реакции используют для образования алкановых производных.

Свободнорадикальное замещение происходит в три основных этапа:

  1. Появление цепочки, на основе которой создаются свободные радикалы. В качестве катализаторов используют нагревание и ультрафиолетовый свет.
  2. Развитие цепочки, в структуре которой происходят взаимодействия активных и неактивных частиц. Так формируются молекулы и радикальные частицы.
  3. В завершение цепочка обрывается. Активные элементы создают новые комбинации или вовсе исчезают. Цепная реакция завершается.

Галогенирование

Процесс осуществляется по радикальному типу. Галогенирование происходит под воздействием ультрафиолета и температурного нагрева углеводородной и галогеновой смеси.

Весь процесс происходит по правилу Марковникова. Суть его заключается в том, что первым галогенированию подвергается атом водорода, принадлежащий гидрированному углероду. Процесс начинается с третичного атома и заканчивается первичным углеродом.

Сульфохлорирование

Другое название – реакция Рида. Осуществляется она методом свободнорадикального замещения. Таким образом, алканы реагируют на действие комбинации серного диоксида и хлора под воздействием ультрафиолетового излучения.

Реакция начинается с активизации цепного механизма. В это время из хлора выделяются два радикала. Действие одного направлено на алкан, в результате формируется молекула хлорводорода и алкильный элемент. Другой радикал соединяется с диоксидом серы, создавая сложную комбинацию. Для равновесия из другой молекулы отбирают один атом хлора. В итоге получают сульфонилхлорид алкана. Это вещество используют для выработки поверхностно-активных компонентов.

Сульфохлорирование

Нитрование

Процесс нитрования подразумевает соединение насыщенных углеродов с газообразным оксидом четырехвалентного азота и азотной кислотой, доведенной до 10% раствора. Для протекания реакции потребуется низкий уровень давления и высокая температура, приблизительно 104 градуса. В результате нитрования получают нитроалканы.

Отщепление

Посредством отделения атомов проводят реакции дегидрирования. Молекулярная частица метана полностью разлагается под влиянием температуры.

Дегидрирование

Если от углеродной решетки парафина (кроме метана) отделить атом водорода, образуются непредельные соединения. Эти реакции осуществляются в условиях значительных температурных режимов (400-600 градусов). Также используются различные металлические катализаторы.

Получение алканов происходит путем проведения гидрирования непредельных углеводородов.

Процесс разложения

При влиянии температур во время алкановых реакций могут происходить разрывы молекулярных связей, выделение активных радикалов. Эти процессы известны под названием пиролиз и крекинг.

При нагревании реакционного компонента до 500 градусов, молекулы начинают разлагаться, а на их месте формируются сложные радикальные алкильные смеси. Таким способом получают алканы и алкены в промышленности.

Окисление

Это химические реакции, основанные на отдаче электронов. Для парафинов характерно автоокисление. В процессе используется окисление насыщенных углеводородов свободными радикалами. Алкановые соединения в жидком состоянии преобразуются в гидроперекись. Сначала парафин вступает в реакцию с кислородом. Образуются активные радикалы. Затем происходит реакция алкильной частицы со второй молекулой кислорода. Формируется перекисный радикал, который в последствие взаимодействует с алкановой молекулой. В результате процесса выделяется гидроперекись.

Реакция окисления алканов

Применение алканов

Углеродные соединения имеют широкое применение практически во всех основных сферах человеческой жизни. Некоторые из видов соединений являются незаменимыми для определенных отраслей производства и комфортного существования современного человека.

Газообразные алканы – основа ценного топлива. Главным компонентом большинства газов является метан.

Метан обладает способностью создавать и выделять большое количество тепла. Поэтому его в значительных объемах применяют в промышленности, для потребления в бытовых условиях. При смешивании бутана и пропана получают хорошее бытовое топливо.

Метан используют при производстве таких продуктов:

  • метанол;
  • растворители;
  • фреон;
  • типографская краска;
  • топливо;
  • синтез-газ;
  • ацетилен;
  • формальдегид;
  • муравьиная кислота;
  • пластмасса.

Применение метана

Жидкие углеводороды предназначены для создания топлива для двигателей и ракет, растворителей.

Высшие углеводороды, где количество атомов углерода превышает 20, участвуют в производстве смазочных веществ, лакокрасочной продукции, мыла и моющих средств.

Комбинация жирных углеводородов, в которых менее 15 атомов Н, являет собой вазелиновое масло. Эта безвкусная прозрачная жидкость применяется в косметике, в создании парфюмов, в медицинских целях.

Вазелин – результат соединения твердых и жирных алканов с количеством атомов углерода меньше 25. Вещество участвует в создании медицинских мазей.

Парафин, полученный в результате комбинирования твердых алканов, является твердой безвкусной массой, белого цвета и без аромата. Из вещества производят свечи, пропитывающую субстанцию для упаковочной бумаги и спичек. Также парафин популярен при осуществлении тепловых процедур в косметологии и медицине.

Обратите внимание! На основе алкановых смесей также делают синтетические волокна, пластмассы, моющую химию и каучук.

Галогенопроизводные алкановые соединения выполняют функции растворителей, хладагентов, а также основного вещества для дальнейшего синтеза.

Полезное видео: алканы — химические свойства

Вывод

Алканы являются ациклическими углеводородными соединениями, обладающими линейной или разветвленной структурой. Между атомами установлена одинарная связь, которая не поддается разрушению. Реакции алканов, основанные на замещении молекул, свойственные этому виду соединений. Гомологический ряд имеет общую структурную формулу CnH2n+2. Углеводороды относятся к насыщенному классу, поскольку содержат максимально допустимое количество атомов водорода.

Вконтакте

Предельные углеводороды - это такие соединения, которые представляют собой молекулы, состоящие из атомов углерода, находящихся в состоянии гибридизации sp 3 . Они связаны между собой исключительно ковалентными сигма-связями. Название «предельные» или «насыщенные» углеводороды исходит из того факта, что эти соединения не имеют возможности присоединять какие-либо атомы. Они предельны, полностью насыщены. Исключение составляют циклоалканы.

Что такое алканы?

Алканы - это углеводороды предельные, а их углеродная цепь незамкнута и состоит из атомов углерода, связанных между собой при помощи одинарных связей. Она не содержит иных (то есть двойных, как у алкенов, или же тройных, как у алкилов) связей. Алканы также называют парафинами. Это название они получили, так как общеизвестные парафины являются смесью преимущественно данных предельных углеводородов С 18 -С 35 с особой инертностью.

Общие сведения об алканах и их радикалах

Их формула: С n Р 2 n +2 , здесь n больше или равно 1. Молярная масса вычисляется по формуле: М = 14n + 2. Характерная особенность: окончания в их названиях - «-ан». Остатки их молекул, которые образуются в результате замещения водородных атомов на иные атомы, имеют название алифатических радикалов, или алкилов. Их обозначают буквой R. Общая формула одновалентных алифатических радикалов: С n Р 2 n +1 , здесь n больше или равно 1. Молярная масса алифатических радикалов вычисляется по формуле: М = 14n + 1. Характерная особенность алифатических радикалов: окончания в названиях «-ил». Молекулы алканов имеют свои особенности строения:

  • связь С-С характеризуется длиной 0,154 нм;
  • связь С-Н характеризуется длиной 0,109 нм;
  • валентный угол (угол между связями углерод-углерод) равен 109 градусов и 28 минут.

Начинают гомологический ряд алканы: метан, этан, пропан, бутан и так далее.

Физические свойства алканов

Алканы - это вещества, которые не имеют цвета и нерастворимы в воде. Температура, при которой алканы начинают плавиться, и температура, при которой они закипают, повышаются в соответствии с увеличением молекулярной массы и длины углеводородной цепи. От менее разветвленных к более разветвленным алканам температуры кипения и плавления понижаются. Газообразные алканы способны гореть бледно-голубым либо бесцветным пламенем, при этом выделяется довольно много тепла. СН 4 -С 4 Н 10 представляют собой газы, у которых отсутствует также и запах. С 5 Н 12 -С 15 Н 32 - это жидкости, которые обладают специфическим запахом. С 15 Н 32 и так далее - это твердые вещества, которые также не имеют запаха.

Химические свойства алканов

Данные соединения являются малоактивными в химическом плане, что можно объяснить прочностью трудноразрываемых сигма-связей - С-С и С-Н. Также стоит учитывать, что связи С-С неполярны, а С-Н малополярны. Это малополяризуемые виды связей, относящиеся к сигма-виду и, соответственно, разрываться по наибольшей вероятности они станут по механизму гомолитическому, в результате чего будут образовываться радикалы. Таким образом, химические свойства алканов в основном ограничиваются реакциями радикального замещения.

Реакции нитрования

Алканы взаимодействуют только с азотной кислотой с концентрацией 10% либо с оксидом четырехвалентного азота в газовой среде при температуре 140°С. Реакция нитрования алканов носит название реакции Коновалова. В результате образуются нитросоединения и вода: CH 4 + азотная кислота (разбавленная) = CH 3 - NO 2 (нитрометан) + вода.

Реакции горения

Предельные углеводороды очень часто применяются как топливо, что обосновано их способностью к горению: С n Р 2n+2 + ((3n+1)/2) O 2 = (n+1) H 2 O + n СО 2 .

Реакции окисления

В химические свойства алканов также входит их способность к окислению. В зависимости от того, какие условия сопровождают реакцию и как их изменяют, можно из одного и того же вещества получить различные конечные продукты. Мягкое окисление метана кислородом при наличии катализатора, ускоряющего реакцию, и температуры около 200 °С может дать в результате следующие вещества:

1) 2СН 4 (окисление кислородом) = 2СН 3 ОН (спирт - метанол).

2) СН 4 (окисление кислородом) = СН 2 О (альдегид - метаналь или формальдегид) + Н 2 О.

3) 2СН 4 (окисление кислородом) = 2НСООН (карбоновая кислота - метановая или муравьиная) + 2Н 2 О.

Также окисление алканов может производиться в газообразной или жидкой среде воздухом. Такие реакции приводят к образованию высших жирных спиртов и соответствующих кислот.

Отношение к нагреванию

При температурах, не превышающих +150-250°С, обязательно в присутствии катализатора, происходит структурная перестройка органических веществ, которая заключается в изменении порядка соединения атомов. Данный процесс называется изомеризацией, а вещества, полученные в результате реакции - изомерами. Таким образом, из нормального бутана получается его изомер - изобутан. При температурах 300-600°С и наличии катализатора происходит разрыв связей С-Н с образованием молекул водорода (реакции дегидрирования), молекул водорода с замыканием углеродной цепи в цикл (реакции циклизации или ароматизации алканов):

1) 2СН 4 = С 2 Н 4 (этен) + 2Н 2.

2) 2СН 4 = С 2 Н 2 (этин) + 3Н 2.

3) С 7 Н 16 (нормальный гептан) = С 6 Н 5 - СН 3 (толуол) + 4Н 2 .

Реакции галогенирования

Такие реакции заключаются во введении в молекулу органического вещества галогенов (их атомов), в результате чего образуется связь С-галоген. При взаимодействии алканов с галогенами образуются галогенпроизводные. Данная реакция обладает специфическими особенностями. Она протекает по механизму радикальному, и чтобы ее проинициировать, необходимо на смесь галогенов и алканов воздействовать ультрафиолетовым излучением или же просто нагреть ее. Свойства алканов позволяют реакции галогенирования протекать, пока не будет достигнуто полное замещение на атомы галогена. То есть хлорирование метана не закончится одной стадией и получением метилхлорида. Реакция пойдет далее, будут образовываться все возможные продукты замещения, начиная с хлорметана и заканчивая тетрахлорметаном. Воздействие хлора при данных условиях на другие алканы приведет к образованию различных продуктов, полученных в результате замещения водорода у различных атомов углерода. От температуры, при которой идет реакция, будет зависеть соотношение конечных продуктов и скорость их образования. Чем длиннее углеводородная цепь алкана, тем легче будет идти данная реакция. При галогенировании сначала будет замещаться атом углерода наименее гидрированый (третичный). Первичный вступит в реакцию после всех остальных. Реакция галогенирования будет происходить поэтапно. На первом этапе заместиться только один атом водорода. C растворами галогенов (хлорной и бромной водой) алканы не взаимодействуют.

Реакции сульфохлорирования

Химические свойства алканов также дополняются реакцией сульфохлорирования (она носит название реакции Рида). При воздействии ультрафиолетового излучения алканы способны реагировать со смесью хлора и диоксида серы. В результате образуется хлороводород, а также алкильный радикал, который присоединяет к себе диоксид серы. В результате получается сложное соединение, которое становится стабильным благодаря захвату атома хлора и разрушения очередной его молекулы: R-H + SO 2 + Cl 2 + ультрафиолетовое излучение = R-SO 2 Cl + HCl. Образовавшиеся в результате реакции сульфонилхлориды находят широкое применение в производстве поверхностно-активных веществ.

В таблице представлены некоторые представители ряда алканов и их радикалы.

Формула

Название

Название радикала

CH3 метил

C3H7 пропил

C4H9 бутил

изобутан

изобутил

изопентан

изопентил

неопентан

неопентил

Из таблицы видно, что эти углеводороды отличаются друг от друга количеством групп - СН2 -.Такой ряд сходных по строению, обладающих близкими химическими свойствами и отличающихся друг от друга числом данных групп называется гомологическим рядом. А вещества, составляющие его называются гомологами.

Гомологи - вещества сходные по строению и свойствам, но отличающиеся по составу на одну или несколько гомологических разностей (- СН2 -)

Углеродная цепь - зигзаг (если n ≥ 3)

σ - связи (свободное вращение вокруг связей)

длина (-С-С-) 0,154 нм

энергия связи (-С-С-) 348 кДж/моль

Все атомы углерода в молекулах алканов находятся в состоянии sр3-гибридизации

угол между связями С-C составляет 109°28", поэтому молекулы нормальных алканов с большим числом атомов углерода имеют зигзагообразное строение (зигзаг). Длина связи С-С в предельных углеводородах равна 0,154 нм (1нм=1*10-9м).

а) электронная и структурная формулы;

б) пространственное строение

4. Изомерия - характерна СТРУКТУРНАЯ изомерия цепи с С4

Один из этих изомеров (н -бутан) содержит неразветвленную углеродную цепь, а другой — изобутан — разветвленную (изостроение).

Атомы углерода в разветвленной цепи различаются типом соединения с другими углеродными атомами. Так, атом углерода, связанный только с одном другим углеродным атомом, называется первичным , с двумя другими атомами углерода - вторичным , с тремя - третичным , с четырьмя - четвертичным .

С увеличением числа атомов углерода в составе молекул увеличиваются возможности для разветвления цепи, т.е. количество изомеров растет с ростом числа углеродных атомов.

Сравнительная характеристика гомологов и изомеров


1. Свою номенклатуру имеют радикалы (углеводородные радикалы)

Алкан

С n H2n+2

Радикал (R)

С n H2n+ 1

НАЗВАНИЕ

Физические свойства

В обычных условиях

С1- С4 - газы

С5- С15 - жидкие

С16 - твёрдые

Температуры плавления и кипения алканов, их плотности увеличиваются в гомологическом ряду с ростом молекулярной массы. Все алканы легче воды, в ней не растворимы, однако растворимы в неполярных растворителях (например, в бензоле) и сами являются хорошими растворителями. Физические свойства некоторых алканов представлены в таблице.

Таблица 2. Физические свойства некоторых алканов

а) Галогенирование

при действии света - hν или нагревании (стадийно - замещение атомов водорода на галоген носит последовательный цепной характер. Большой вклад в разработку цепных реакций внёс физик, академик, лауреат Нобелевской премии Н. Н. Семёнов)

В реакции образуются вещества галогеналканы или С n H 2 n +1 Г

(Г - это галогены F, Cl, Br, I)

CH4 + Cl2 hν → CH3Cl + HCl (1 стадия) ;

метан хлорметан CH3Cl + Cl2 hν → CH2Cl2 + HCl (2 стадия);

дихлорметан

СH2Cl2 + Cl2 hν → CHCl3 + HCl (3 стадия);

трихлорметан

CHCl3 + Cl2 hν → CCl4 + HCl (4 стадия).

тетрахлорметан

Скорость реакции замещения водорода на атом галогена у галогеналканов выше, чем у соответствующего алкана, это связано с взаимным влиянием атомов в молекуле:

Электронная плотность связи С - Cl смещена к более электроотрицательному хлору, в результате на нём скапливается частичный отрицательный заряд, а на атоме углерода - частичный положительный заряд.

На атом углерода в метильной группе (- СН3) создаётся дефицит электронной плотности, поэтому он компенсирует свой заряд за счёт соседних атомов водорода, в результате связь С - Н становится менее прочной и атомы водорода легче замещаются на атомы хлора. При увеличении углеводородного радикала наиболее подвижными остаются атомы водорода у атома углерода ближайщего к заместителю:

CH3 - CH2 - Cl + Cl2 h ν CH3 - CHCl2 + HCl

хлорэтан 1 ,1 -дихлорэтан

Со фтором реакция идёт со взрывом.

С хлором и бромом требуется инициатор.

Иодирование происходит обратимо, поэтому требуется окислитель для удаления HI из рекции.

Внимание!

В реакциях замещения алканов легче всего замещаются атомы водорода у третичных атомов углерода, затем у вторичных и, в последнюю очередь, у первичных. Для хлорирования эта закономерность не соблюдается при T >400˚ C .


б) Нитрование

(реакция М.И. Коновалова, он провёл её впервые в 1888 г)

CH4 + HNO3(раствор ) С CH3NO2 + H2O

нитрометан

RNO2 или С n H2n+1 NO2 ( нитроалкан )